Background: Hypoxic conditions induce the expression of hypoxia-inducible factors (HIFs) that allow cells to adapt to the changing conditions and alter the expression of a number of genes including the cystic fibrosis transmembrane conductance regulator (CFTR). is a low abundance mRNA in airway epithelial cells even during normoxic conditions, but during hypoxia its mRNA expression decreases even further.

Methods: In the current studies, we examined the kinetics of hypoxia-induced changes in mRNA and protein levels in two human airway epithelial cell lines, Calu-3 and 16HBE14o-, and in normal primary bronchial epithelial cells. Our goal was to examine the posttranscriptional modifications that affected CFTR expression during hypoxia. We utilized in silico predictive protocols to establish potential miRNAs that could potentially regulate message stability and identified miR-200b as a candidate molecule.

Results: Analysis of each of the epithelial cell types during prolonged hypoxia revealed that expression decreased after 12 h during a time when miR-200b was continuously upregulated. Furthermore, manipulation of the miRNA levels during normoxia and hypoxia using miR-200b mimics and antagomirs decreased and increased mRNA levels, respectively, and thus established that miR-200b downregulates message levels during hypoxic conditions.

Conclusion: The data suggest that miR-200b may be a suitable target for modulating CFTR levels in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5688675PMC
http://dx.doi.org/10.1186/s11658-017-0054-0DOI Listing

Publication Analysis

Top Keywords

epithelial cells
12
mir-200b downregulates
8
airway epithelial
8
epithelial cell
8
mir-200b
6
hypoxia
5
epithelial
5
expression
5
levels
5
cftr
4

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: During mammalian spermatogenesis, the cytoskeleton system plays a significant role in morphological changes. Male infertility such as non-obstructive azoospermia (NOA) might be explained by studies of the cytoskeletal system during spermatogenesis.

Methods: The cytoskeleton, scaffold, and actin-binding genes were analyzed by microarray and bioinformatics (771 spermatogenic cellsgenes and 774 Sertoli cell genes).

View Article and Find Full Text PDF

The process of viral entry into host cells is crucial for the establishment of infection and the determination of viral pathogenicity. A comprehensive understanding of entry pathways is fundamental for the development of novel therapeutic strategies. Standard techniques for investigating viral entry include confocal microscopy and flow cytometry, both of which provide complementary qualitative and quantitative data.

View Article and Find Full Text PDF

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

The aberrant vascular response associated with tendon injury results in circulating immune cell infiltration and a chronic inflammatory feedback loop leading to poor healing outcomes. Studying this dysregulated tendon repair response in human pathophysiology has been historically challenging due to the reliance on animal models. To address this, our group developed the human tendon-on-a-chip (hToC) to model cellular interactions in the injured tendon microenvironment; however, this model lacked the key element of physiological flow in the vascular compartment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!