The effect of climate change on the duration of avian breeding seasons: a meta-analysis.

Proc Biol Sci

Department of Behavioural Ecology, Wrocław University, Sienkiewicza 21, Wrocław 50-335, Poland.

Published: November 2017

Many bird species are advancing the timing of their egg-laying in response to a warming climate. Little is known, however, of whether this advancement affects the respective length of the breeding seasons. A meta-analysis of 65 long-term studies of 54 species from the Northern Hemisphere has revealed that within the last 45 years an average population has lengthened the season by 1.4 days per decade, which was independent from changes in mean laying dates. Multi-brooded birds have prolonged their seasons by 4 days per decade, while single-brooded have shortened by 2 days. Changes in season lengths covaried with local climate changes: warming was correlated with prolonged seasons in multi-brooded species, but not in single-brooders. This might be a result of higher ecological flexibility of multi-brooded birds, whereas single brooders may have problems with synchronizing their reproduction with the peak of food resources. Sedentary species and short-distance migrants prolonged their breeding seasons more than long-distance migrants, which probably cannot track conditions at their breeding grounds. We conclude that as long as climate warming continues without major changes in ecological conditions, multi-brooded or sedentary species will probably increase their reproductive output, while the opposite effect may occur in single-brooded or migratory birds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719171PMC
http://dx.doi.org/10.1098/rspb.2017.1710DOI Listing

Publication Analysis

Top Keywords

breeding seasons
12
seasons meta-analysis
8
days decade
8
multi-brooded birds
8
prolonged seasons
8
sedentary species
8
seasons
5
species
5
climate
4
climate change
4

Similar Publications

A Series of Novel Alleles of Modulating Heading and Salt Tolerance in Rice.

Plants (Basel)

January 2025

State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.

Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.

View Article and Find Full Text PDF

This study explores the impact of geographical origin, harvest time, and cooking on the volatile organic compound (VOC) profiles of wild and reared seabream from the Adriatic and Tyrrhenian Seas. A Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) allowed for VOC profiling with high sensitivity and high throughput. A total of 227 mass peaks were identified.

View Article and Find Full Text PDF

Haplotype Analysis and Gene Pyramiding for Pre-Harvest Sprouting Resistance in White-Grain Wheat.

Int J Mol Sci

January 2025

Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture/Key Laboratory for Wheat Germplasm Resources and Genetic Improvement in Henan Province, Zhengzhou 450002, China.

The Huanghuai winter wheat region, China's primary wheat-producing area, predominantly cultivates white-grained wheat. Pre-harvest sprouting (PHS) significantly impacts yield and quality, making the breeding of PHS-resistant varieties crucial for ensuring China's wheat production security. This study evaluated the PHS rate of 344 white-grained wheat varieties over two consecutive growing seasons (2022/2023 and 2023/2024).

View Article and Find Full Text PDF

The amphibian chytrid fungus, (), has been implicated as an agent of acute declines in amphibian populations worldwide. East Asian amphibians have been coexisting with for long periods and thus are considered resistant; among the many is the Japanese tree frog, . Our study focused infection effects on reproductive behaviors and physiological parameters in as a function of better understanding the chronic effect of the disease on long-term population viability.

View Article and Find Full Text PDF

Seasonal Dynamics of the Bacterial Community in Lake Urmia, a Hypersaline Ecosystem.

Biology (Basel)

January 2025

Department of Plant Breeding, Cotton Research Institute of Iran (CRII), Agricultural Research, Education and Extension Organization (AREEO), Gorgan 49166-85915, Iran.

Lake Urmia is one of the world's most unique and hypersaline aquatic ecosystems. The aim of this study was to investigate the diversity, abundance and frequency of these microorganisms in water samples from the eastern regions of the lake over four seasons. Amplicon sequencing for the 16S rRNA gene was performed to examine bacterial communities in the samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!