A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Tactile perception of the roughness of 3D-printed textures. | LitMetric

Tactile perception of the roughness of 3D-printed textures.

J Neurophysiol

Department of Neuroscience and Physiology and NYU Neuroscience Institute, New York University School of Medicine, New York, New York.

Published: March 2018

Surface roughness is one of the most important qualities in haptic perception. Roughness is a major identifier for judgments of material composition, comfort, and friction and is tied closely to manual dexterity. Some attention has been given to the study of roughness perception in the past, but it has typically focused on noncontrollable natural materials or on a narrow range of artificial materials. The advent of high-resolution three-dimensional (3D) printing technology provides the ability to fabricate arbitrary 3D textures with precise surface geometry to be used in tactile studies. We used parametric modeling and 3D printing to manufacture a set of textured plates with defined element spacing, shape, and arrangement. Using active touch and two-alternative forced-choice protocols, we investigated the contributions of these surface parameters to roughness perception in human subjects. Results indicate that large spatial periods produce higher estimations of roughness (with Weber fraction = 0.19), small texture elements are perceived as rougher than large texture elements of the same wavelength, perceptual differences exist between textures with the same spacing but different arrangements, and roughness equivalencies exist between textures differing along different parameters. We posit that papillary ridges serve as tactile processing units, and neural ensembles encode the spatial profiles of the texture contact area to produce roughness estimates. The stimuli and the manufacturing process may be used in further studies of tactile roughness perception and in related neurophysiological applications. NEW & NOTEWORTHY Surface roughness is an integral quality of texture perception. We manufactured textures using high-resolution 3D printing, which allows precise specification of the surface spatial topography. In human psychophysical experiments we investigated the contributions of specific surface parameters to roughness perception. We found that textures with large spatial periods, small texture elements, and irregular, isotropic arrangements elicit the highest estimations of roughness. We propose that roughness correlates inversely with the total contacted surface area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899311PMC
http://dx.doi.org/10.1152/jn.00564.2017DOI Listing

Publication Analysis

Top Keywords

roughness perception
16
roughness
13
texture elements
12
perception roughness
8
surface roughness
8
investigated contributions
8
surface parameters
8
parameters roughness
8
large spatial
8
spatial periods
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!