Asymmetry of inverted-topology repeats in the AE1 anion exchanger suggests an elevator-like mechanism.

J Gen Physiol

Computational Structural Biology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD

Published: December 2017

The membrane transporter anion exchanger 1 (AE1), or band 3, is a key component in the processes of carbon-dioxide transport in the blood and urinary acidification in the renal collecting duct. In both erythrocytes and the basolateral membrane of the collecting-duct α-intercalated cells, the role of AE1 is to catalyze a one-for-one exchange of chloride for bicarbonate. After decades of biochemical and functional studies, the structure of the transmembrane region of AE1, which catalyzes the anion-exchange reaction, has finally been determined. Each protomer of the AE1 dimer comprises two repeats with inverted transmembrane topologies, but the structures of these repeats differ. This asymmetry causes the putative substrate-binding site to be exposed only to the extracellular space, consistent with the expectation that anion exchange occurs via an alternating-access mechanism. Here, we hypothesize that the unknown, inward-facing conformation results from inversion of this asymmetry, and we propose a model of this state constructed using repeat-swap homology modeling. By comparing this inward-facing model with the outward-facing experimental structure, we predict that the mechanism of AE1 involves an elevator-like motion of the substrate-binding domain relative to the nearly stationary dimerization domain and to the membrane plane. This hypothesis is in qualitative agreement with a wide range of biochemical and functional data, which we review in detail, and suggests new avenues of experimentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5715908PMC
http://dx.doi.org/10.1085/jgp.201711836DOI Listing

Publication Analysis

Top Keywords

anion exchanger
8
biochemical functional
8
ae1
6
asymmetry inverted-topology
4
inverted-topology repeats
4
repeats ae1
4
ae1 anion
4
exchanger suggests
4
suggests elevator-like
4
elevator-like mechanism
4

Similar Publications

Biochemical evidence for the diversity of LHCI proteins in PSI-LHCI from the red alga Galdieria sulphuraria NIES-3638.

Photosynth Res

January 2025

Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan.

Red algae are photosynthetic eukaryotes whose light-harvesting complexes (LHCs) associate with photosystem I (PSI). In this study, we examined characteristics of PSI-LHCI, PSI, and LHCI isolated from the red alga Galdieria sulphuraria NIES-3638. The PSI-LHCI supercomplexes were purified using anion-exchange chromatography followed by hydrophobic-interaction chromatography, and finally by trehalose density gradient centrifugation.

View Article and Find Full Text PDF

Design of RuO Electrocatalysts Containing Metallic Ru on the Surface to Accelerate the Alkaline Hydrogen Evolution Reaction.

ACS Appl Mater Interfaces

January 2025

Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, Institute of New-Energy, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.

The development of water splitting technology in alkaline medium requires the exploration of electrocatalysts superior to Pt/C to boost the alkaline hydrogen evolution reaction (HER). Ruthenium oxides with strong water dissociation ability are promising candidates; however, the lack of hydrogen combination sites immensely limits their performance. Herein, we reported a unique RuO catalyst with metallic Ru on its surface through a simple cation exchange method.

View Article and Find Full Text PDF

Two π-radical complexes containing bisazo-aromatic-centered radical anion (1•-) were synthesized through in-situ electron transfer from metal-to-ligand using [IrI] and 2-(2-Pyridylazo)azobenzene (1) in inert hydrocarbon solvent. These are characterized as diradical [IrIII(1•-)2]+[2]+ and monoradical [IrIII(1•-)Cl2(PPh3)] 3. In contrast, a rare metal-mediated hydrolytic cleavage of the C(sp2)-N bond occurred in protic solvent resulting in quaternary radical complex [IrIII(1•-)(1')(PPh3)]+(4)+.

View Article and Find Full Text PDF

Five alkali metal manganese(III) fluorophosphates, KMn(POF)F (I), RbMn(POF)F (II), RbMn(POF)(PO)F (III), RbMn(POF)(PO)F (IV), and CsMn(POF)F (V), were successfully synthesized using a hydrothermal method. The monofluorophosphate anion (POF) groups work as "chemical scissors" to promote low-dimensional spin structures with the aid of alkali metal cations. I and II had an = 2 uniform chain structure formed by corner-sharing -MnOF octahedra.

View Article and Find Full Text PDF

Dinitramide salts based on nitropyrazole-diaminotriazole hybrid: novel ionic energetic materials with high-energy and low-sensitivity.

Phys Chem Chem Phys

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

In this study, employing a simple anion exchange strategy and straightforward three-step synthetic route, a pair of promising nitrogen-rich heterocyclic cation and oxygen-rich anion were assembled together to generate two novel dinitramide energetic salts, both of which exhibit prominent detonation performance comparable to benchmark explosive RDX while possessing significantly lower mechanical sensitivity than RDX, thereby highlighting them as promising candidates for advanced secondary explosives. This work has directly led to a practical protocol for the design of chloride-free environmentally friendly IEMs, and accelerates the development of organic explosives with high-energy and low-sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!