A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unsupervised gene selection using biological knowledge : application in sample clustering. | LitMetric

Unsupervised gene selection using biological knowledge : application in sample clustering.

BMC Bioinformatics

IIT Ropar, Department of Computer Science and engineering, Punjab, India.

Published: November 2017

Background: Classification of biological samples of gene expression data is a basic building block in solving several problems in the field of bioinformatics like cancer and other disease diagnosis and making a proper treatment plan. One big challenge in sample classification is handling large dimensional and redundant gene expression data. To reduce the complexity of handling this high dimensional data, gene/feature selection plays a major role.

Results: The current paper explores the use of biological knowledge acquired from Gene Ontology database in selecting the proper subset of genes which can further participate in clustering of samples. The proposed feature selection technique is unsupervised in nature as it does not utilize any class label information in the process of gene selection. At the end, a multi-objective clustering approach is deployed to cluster the available set of samples in the reduced gene space.

Conclusions: Reported results show that consideration of biological knowledge in gene selection technique not only reduces the feature space dimensionality in great extent but also improves the accuracy of sample classification. The obtained reduced gene space is validated using strong biological significance tests. In order to prove the supremacy of our proposed gene selection based sample clustering technique, a thorough comparative analysis has also been performed with state-of-the-art techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5700545PMC
http://dx.doi.org/10.1186/s12859-017-1933-0DOI Listing

Publication Analysis

Top Keywords

gene selection
16
biological knowledge
12
sample clustering
8
gene
8
gene expression
8
expression data
8
sample classification
8
selection technique
8
reduced gene
8
selection
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!