Bowhead whales (Balaena mysticetus) have a nearly circumpolar distribution, and occasionally occupy warmer shallow coastal areas during summertime that may facilitate molting. However, relatively little is known about the occurrence of molting and associated behaviors in bowhead whales. We opportunistically observed whales in Cumberland Sound, Nunavut, Canada with skin irregularities consistent with molting during August 2014, and collected a skin sample from a biopsied whale that revealed loose epidermis and sloughing. During August 2016, we flew a small unmanned aerial system (sUAS) over whales to take video and still images to: 1) determine unique individuals; 2) estimate the proportion of the body of unique individuals that exhibited sloughing skin; 3) determine the presence or absence of superficial lines representative of rock-rubbing behavior; and 4) measure body lengths to infer age-class. The still images revealed that all individuals (n = 81 whales) were sloughing skin, and that nearly 40% of them had mottled skin over more than two-thirds of their bodies. The video images captured bowhead whales rubbing on large rocks in shallow, coastal areas-likely to facilitate molting. Molting and rock rubbing appears to be pervasive during late summer for whales in the eastern Canadian Arctic.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699794 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186156 | PLOS |
The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s.
View Article and Find Full Text PDFbioRxiv
November 2024
Department of Biology, University of Rochester, Rochester, NY, USA.
At over 200 years, the maximum lifespan of the bowhead whale exceeds that of all other mammals. The bowhead is also the second-largest animal on Earth, reaching over 80,000 kg. Despite its very large number of cells and long lifespan, the bowhead is not highly cancer-prone, an incongruity termed Peto's Paradox.
View Article and Find Full Text PDFGlob Chang Biol
October 2024
Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
Assessing genetic structure and diversity in wildlife is particularly important in the context of climate change. The Arctic is rapidly warming, and endemic species must adapt quickly or face significant threats to persistence. Bowhead whales (Balaena mysticetus) and narwhals (Monodon monoceros) are two long-lived Arctic species with similar habitat requirements and are often seen together in the Canadian Arctic.
View Article and Find Full Text PDFProc Biol Sci
August 2024
CEFE, Univ Montpellier, CNRS, EPHE, IRD , Montpellier, France.
In the Atlantic Arctic, bowhead whales () were nearly exterminated by European whalers between the seventeenth and nineteenth centuries. The collapse of the East Greenland-Svalbard-Barents Sea population, from an estimated 50 000 to a few hundred individuals, drastically reduced predation on mesozooplankton. Here, we tested the hypothesis that this event strongly favoured the demography of the little auk (), a zooplanktivorous feeder competitor of bowhead whales and the most abundant seabird in the Arctic.
View Article and Find Full Text PDFJ Acoust Soc Am
April 2024
Centre de mathématiques appliquées de l'Ècole Polytechnique, Centre National de la Recherche Scientifique, Ècole Polytechnique, Institut Polytechnique de Paris, Palaiseau, 91120, France.
This paper proposes a fully automated method for recovering modal components from a signal in shallow waters. The scenario involves an unknown source emitting low-frequency sound waves in a shallow water environment, and a single hydrophone recording the signal. The proposed automated algorithm is based on the warping method to separate each modal component in the time-frequency space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!