A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Which Sleep Health Characteristics Predict All-Cause Mortality in Older Men? An Application of Flexible Multivariable Approaches. | LitMetric

Study Objectives: Sleep is multidimensional, with domains including duration, timing, continuity, regularity, rhythmicity, quality, and sleepiness/alertness. Individual sleep characteristics representing these domains are known to predict health outcomes. However, most studies consider sleep characteristics in isolation, resulting in an incomplete understanding of which sleep characteristics are the strongest predictors of health outcomes. We applied three multivariable approaches to robustly determine which sleep characteristics increase mortality risk in the osteoporotic fractures in men sleep study.

Methods: In total, 2,887 men (mean 76.3 years) completed relevant assessments and were followed for up to 11 years. One actigraphy or self-reported sleep characteristic was selected to represent each of seven sleep domains. Multivariable Cox models, survival trees, and random survival forests were applied to determine which sleep characteristics increase mortality risk.

Results: Rhythmicity (actigraphy pseudo-F statistic) and continuity (actigraphy minutes awake after sleep onset) were the most robust sleep predictors across models. In a multivariable Cox model, lower rhythmicity (hazard ratio, HR [95%CI] =1.12 [1.04, 1.22]) and lower continuity (1.16 [1.08, 1.24]) were the strongest sleep predictors. In the random survival forest, rhythmicity and continuity were the most important individual sleep characteristics (ranked as the sixth and eighth most important among 43 possible sleep and non-sleep predictors); moreover, the predictive importance of all sleep information considered simultaneously followed only age, cognition, and cardiovascular disease.

Conclusions: Research within a multidimensional sleep health framework can jumpstart future research on causal pathways linking sleep and health, new interventions that target specific sleep health profiles, and improved sleep screening for adverse health outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806578PMC
http://dx.doi.org/10.1093/sleep/zsx189DOI Listing

Publication Analysis

Top Keywords

sleep characteristics
24
sleep
20
sleep health
16
health outcomes
12
multivariable approaches
8
individual sleep
8
determine sleep
8
characteristics increase
8
increase mortality
8
multivariable cox
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!