Macrophage Receptor with COllagenous structure (MARCO) is a class A scavenger receptor that binds, phagocytoses, and modifies inflammatory responses to bacterial pathogens. Multiple candidate gene approach studies have shown that polymorphisms in MARCO are associated with susceptibility or resistance to Mycobacterium tuberculosis infection, but how these variants alter function is not known. To complement candidate gene approach studies, we previously used phylogenetic analyses to identify a residue, glutamine 452 (Q452), within the ligand-binding Scavenger Receptor Cysteine Rich domain as undergoing positive selection in humans. Herein, we show that Q452 is found in Denisovans, Neanderthals, and extant humans, but all other nonprimate, terrestrial, and aquatic mammals possess an aspartic acid (D452) residue. Further analysis of hominoid sequences of MARCO identified an additional human-specific mutation, phenylalanine 282 (F282), within the collagenous domain. We show that residue 282 is polymorphic in humans, but only 17% of individuals (rs6761637) possess the ancestral serine residue at position 282. We show that rs6761637 is in linkage disequilibrium with MARCO polymorphisms that have been previously linked to susceptibility to pulmonary tuberculosis. To assess the functional importance of sites Q452 and F282 in humans, we cloned the ancestral residues and loss-of-function mutations and investigated the role of these residues in binding and internalizing polystyrene microspheres and Escherichia coli. Herein, we show that the residues at sites 452 and 282 enhance receptor function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5850514 | PMC |
http://dx.doi.org/10.1093/molbev/msx298 | DOI Listing |
Int J Mol Sci
January 2025
Department of Medical, Surgical and Neurological Sciences, University of Siena, 53100 Siena, Italy.
Obesity is a global epidemic associated with chronic inflammation, oxidative stress, and metabolic disorders. Bariatric surgery is a highly effective intervention for sustained weight loss and the improvement of obesity-related comorbidities. However, post-surgery nutritional deficiencies, including vitamin E, remain a concern.
View Article and Find Full Text PDFBiomolecules
January 2025
Research Center for Macromolecules and Biomaterials, National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba 305-0047, Japan.
Synthetic cytosine-phosphate-guanine oligodeoxynucleotides (CpG ODNs) are promising candidates for vaccine adjuvants, because they activate immune responses through the Toll-like receptor 9 (TLR9) pathway. However, unmodified CpG ODNs are quickly degraded by serum nucleases, and their negative charge hinders cellular uptake, limiting their clinical application. Our group previously reported that guanine-quadruplex (G4)-forming CpG ODNs exhibit enhanced stability and cellular uptake.
View Article and Find Full Text PDFBr J Pharmacol
January 2025
Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
Background And Purpose: Perivascular adipose tissues (PVATs) play a critical role in modulating vascular homeostasis and protecting against cardiovascular dysfunction-mediated blood pressure dysregulation. We demonstrated that the activating transcription factor-3 (Atf3) gene in the PVAT is crucial for improving vascular wall tension abnormalities; however, its protective mechanism remains unclear. Herein, we aim to determine whether ATF3 regulates PVAT-derived relaxing factor (PVDRF) biosynthesis and if its secretion contributes to vasorelaxation.
View Article and Find Full Text PDFJ Physiol Sci
January 2025
Division of Pharmacology, Meikai University School of Dentistry, 1-1 Keyakidai, 350-0283, Sakado, Saitama, Japan.
This in vivo mouse model study was conducted to investigate the temporal alteration of the function of CD36 in salivary secretion. CD36 was highly expressed in the parotid gland of BALB/c mice. No significant variations were shown in the CD36 levels in the 8-, 48-, and 72-week-old animals.
View Article and Find Full Text PDFWhile key for pathogen immobilization, neutrophil extracellular traps (NETs) often cause severe bystander cell/tissue damage. This was hypothesized to depend on their prolonged presence in the vasculature, leading to cytotoxicity. Imaging of NETs (histones, neutrophil elastase, extracellular DNA) with intravital microscopy in blood vessels of mouse livers in a pathogen-replicative-free environment (endotoxemia) led to detection of NET proteins attached to the endothelium for months despite the early disappearance of extracellular DNA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!