Reversibly photo-switchable wettability of stearic acid monolayer modified bismuth-based micro-/nanomaterials.

Phys Chem Chem Phys

School of Chemistry and Environmental Engineering and Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan, 430073, P. R. China.

Published: December 2017

In this work, we demonstrated a general approach to realize superhydrophobic-superhydrophilic reversible transition over hydrophilic bismuth-related micro-/nanomaterials. Different superhydrophobic bismuth-based micro-/nanomaterials, including BiOCOOH, BiO, (BiO)CO and BiOCl, were obtained by modification with stearic acid, regardless of their morphologies. The reversible wettability of the bismuth-related materials upon alternative UV-vis irradiation and dark storage were investigated via cyclic experiments. The results indicated that the reversible wetting behavior was highly related with the photocatalytic activities of the bismuth-based materials. High photocatalytic activity resulted in less reversible cycles between superhydrophobicity and superhydrophilicity due to the photodegradation of stearic acid. Moreover, with the increase of cycle number, the required minimal time for photo-induced superhydrophilicity decreased and the minimal time for the recovery of superhydrophobicity under dark storage increased. Based on peak deconvolution analysis of XPS and FTIR spectra, a comprehensive understanding of reversible wettability of the bismuth-related micro-/nanomaterials was proposed. This work provides a new strategy to fabricate superhydrophobic-superhydrophilic switchable surfaces for most hydrophilic inorganic materials with different morphologies and photocatalytic activities.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7cp05848aDOI Listing

Publication Analysis

Top Keywords

stearic acid
12
bismuth-based micro-/nanomaterials
8
bismuth-related micro-/nanomaterials
8
reversible wettability
8
wettability bismuth-related
8
dark storage
8
photocatalytic activities
8
minimal time
8
reversible
5
reversibly photo-switchable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!