This study investigates the effects of the addition of tungsten on the structure, phase composition, textural properties and activities of β-SiC-based catalysts in the aqueous phase hydrogenation of furfural. Carbothermal reduction of SiO₂ in the presence of WO₃ at 1550 °C in argon resulted in the formation of WC-β-SiC nanocomposite powders with significant variations in particle morphology and content of WC-tipped β-SiC nano-whiskers, as revealed by TEM and SEM-EDS. The specific surface area (SSA) of the nanocomposite strongly depended on the amount of tungsten and had a notable impact on its catalytic properties for the production of furfuryl alcohol (FA) and tetrahydrofurfuryl alcohol (THFA). Nanocomposite WC-β-SiC catalysts with 10 wt % W in the starting mixture had the highest SSA and the smallest WC crystallites. Some 10 wt % W nanocomposite catalysts demonstrated up to 90% yield of THFA, in particular in the reduction of furfural derived from biomass, although the reproducible performance of such catalysts has yet to be achieved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6150273 | PMC |
http://dx.doi.org/10.3390/molecules22112033 | DOI Listing |
Chem Asian J
January 2025
Charotar University of Science and Technology, Physical Science, P.D. Patel Institute of Applied Sciences, 388421, Changa, INDIA.
The primary obstacle in electrolyzing water is that prolonged large-current operation quickly degrades performance, making it difficult to achieve efficient and continuous hydrogen evolution at high current densities. This work prepared sulfur-doped nickel ferrite nanocomposites using the simple hydrothermal method to improve electrocatalytic green hydrogen production at high-current densities. X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS) were used to analyze the crystalline structure, morphology, and chemical composition of the synthesized nanocomposites.
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Inorganic Chemistry, Faculty of Science, University of Maragheh, Maragheh 55181-83111, Iran.
Clean energy conversion and storage require simple, economical, and effective electrode materials to achieve promising results. The development of high-performance electrocatalysts with adequate stability and cost-effectiveness is essential to ensure low overpotentials toward the oxygen evolution reaction (OER). Herein, a cobalt-based metal-organic framework with 4,4,4-6T14 topology in combination with various ratios of NiMn-layered double hydroxide (Co-MOF@%NiMn-LDH, = 5, 10, 20, and 40%) is applied as an effective electrocatalyst for the oxidation of water.
View Article and Find Full Text PDFLangmuir
January 2025
Natural Environment Experimental Research Center in Turpan, Xinjiang Uygur Autonomous Region, Turpan 838000, China.
In this study, the degradation behavior of poly(lactic acid) nanocomposite films (PLA/Hec-g@PS) under extreme natural environments was investigated, and the degraded PLA based films were applied to adsorb Cu(II). During the early and midstages of degradation, the surface roughness and crack propagation rate of PLA/Hec-g@PS films were significantly lower than those of PLA films. This could be due to the fact that Hec-g@PS enhanced the interaction forces between C-O-C + CH and C═O in the PLA chains, thereby mitigating the degradation of PLA.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Université de Technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de Recherche Royallieu-CS 60 319-60 203, Compiègne Cedex, France. Electronic address:
Chitosan (CH)-based composite films have attracted increasing attention as promising green food packaging materials due to their biodegradability and ease of fabrication. Additionally, lignin (LN) has been widely used as additive for chitosan-based films to improve their physicochemical properties. In this study, a series of composite films made of chitosan nanoparticles (NCH) as a matrix and alkali lignin nanoparticles (LNPs) as functional filler were prepared.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Yıldız Technical University, Department of Bioengineering, Davutpasa Campus, 34210 Esenler, İstanbul, Turkey.
The development of hybrid materials that integrate bioactive and antimicrobial properties within a biodegradable and biocompatible polymer matrix is a key focus in current biomedical research and applications. A significant research gap exists in the field of PHBV nanocomposites, particularly concerning those that simultaneously incorporate both ZnO and HAP particles. This study focuses on the fabrication and characterization of innovative hybrid bionanocomposites composed of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) combined with zinc oxide (ZnO) and silicon-doped hydroxyapatite (SiHAP) nanocrystals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!