A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrochemical Analysis of Enzyme Based on the Self-Assembly of Lipid Bilayer on an Electrode Surface Mediated by Hydrazone Chemistry. | LitMetric

Electrochemical Analysis of Enzyme Based on the Self-Assembly of Lipid Bilayer on an Electrode Surface Mediated by Hydrazone Chemistry.

Anal Chem

Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China.

Published: December 2017

In this work, a new strategy for electrochemical analysis of enzyme has been proposed based on a self-assembled lipid bilayer on an electrode surface mediated by hydrazone chemistry. Taking aldolase as an example, the enzyme can catalyze the formation of products containing carbonyl groups. These groups can react with hydrazine groups of the functional lipid derivative, resulting in the self-assembly of a lipid bilayer on a guanidinium modified electrode surface. The lipid bilayer will then prevent the movement of hydrophilic electrochemical probes. Consequently, the catalytic reaction of the enzyme may result in the change of the obtained electrochemical peak current. Experimental results reveal that aldolase activity can be analyzed over a widely linear detection range from 5 mU/L to 100 U/L with a low detection limit of 1 mU/L. Meanwhile, the method can exhibit good precision and reproducibility and it can be applied for real sample analysis. What is more, because the lipid bilayer is the universal basis for cell-membrane structure, while hydrazone chemistry is popular in nature, this work may also provide a new insight for the development of electrochemical analysis and electrochemical biosensors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.7b03197DOI Listing

Publication Analysis

Top Keywords

lipid bilayer
20
electrochemical analysis
12
electrode surface
12
hydrazone chemistry
12
analysis enzyme
8
self-assembly lipid
8
bilayer electrode
8
surface mediated
8
mediated hydrazone
8
electrochemical
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!