Bone scintigraphy is a nuclear scanning test used to find abnormalities in the skeleton. Certain abnormal processes involving soft tissues can also cause skeletal accumulation of radiotracer during bone scintigraphy. We present a case of periarticular knee soft tissue Tc methylene diphosphonate uptake in a patient with asymmetric polyarthritis. A 33-year-old patient with asymmetric polyarthritis, skin lesions and joint pain underwent bone scintigraphy. Total body examination showed an extra-osseous uptake in periarticular soft tissue of knees joints. A detailed history checkup, physical examination and laboratory tests were carried out to understand the link between the extra-osseous uptake and the phosphonate binding in periarticular soft tissue. To improve the anatomical description of the soft tissue of the knees and to clarify the nature of the extra-skeletal Tc methylene diphosphonate uptake, magnetic resonance imaging scan was performed. Tc-labeled phosphonate binding has been reported in a number of extra-osseous conditions, but to our knowledge, there are a few cases showing bone tracer uptake in polyarthritis. In polyarthritic patients, whole-body bone scintigraphy were useful in examining the whole joints and detecting possible dubious extra-osseous uptake; in fact, it is able to select subjects who require further in-depth analysis, for example, magnetic resonance imaging.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5692125PMC
http://dx.doi.org/10.1177/2050313X17741824DOI Listing

Publication Analysis

Top Keywords

bone scintigraphy
16
soft tissue
16
methylene diphosphonate
12
diphosphonate uptake
12
extra-osseous uptake
12
patient asymmetric
8
asymmetric polyarthritis
8
periarticular soft
8
tissue knees
8
phosphonate binding
8

Similar Publications

Background And Objective: Yttrium-90 plays a significant role in managing drug-resistant inflammatory arthritis through radionuclide synovectomy, where the radioisotope is injected into the affected joint to alleviate pain and inflammation by targeting the synovial tissue. This study aims to evaluate the effectiveness and safety of Yttrium-90 hydroxyapatite radionuclide synovectomy in improving joint functionality, as judged by physicians, in patients with inflammatory arthritis who had not responded to conventional treatments.

Methods: Patients with inflammatory arthritis were recruited from the orthopedics department and referred to the nuclear medicine department for evaluation.

View Article and Find Full Text PDF

Background: The incidence of diabetic foot infections is increasing due to the rising number of persons with diabetes and the prolonged life expectancy. It is vital to differentiate soft-tissue infection (STI) from diabetic foot osteomyelitis (DFO), as treatment modalities and durations vary widely, but this can be challenging. We aimed to assess the blood concentration levels of the high mobility group box 1 protein (HMGB-1) in STI and DFO compared to healthy subjects, and to investigate whether this protein could contribute to differentiating STI from DFO.

View Article and Find Full Text PDF

Objectives: In advanced stages of osteoradionecrosis, medication-related osteonecrosis of the jaw, and osteomyelitis, a resection of sections of the mandible may be unavoidable. The determination of adequate bony resection margins is a fundamental problem because bony resection margins cannot be secured intraoperatively. Single-photon emission computed tomography (SPECT-CT) is more accurate than conventional imaging techniques in detecting inflammatory jaw pathologies.

View Article and Find Full Text PDF

Bone is a common site for the metastasis of malignant tumors, and Single Photon Emission Computed Tomography (SPECT) is widely used to detect these metastases. Accurate delineation of metastatic bone lesions in SPECT images is essential for developing treatment plans. However, current clinical practices rely on manual delineation by physicians, which is prone to variability and subjective interpretation.

View Article and Find Full Text PDF

Tumor-induced osteomalacia is characterized by hypophosphatemia and fragility fractures caused by fibroblast growth factor 23 (FGF23)-producing tumors. We report a case of tumor-induced osteomalacia in which the tumor location could be determined by gallium 68 (Ga)-DOTATOC positron emission tomography (PET)/computed tomography (CT). A 74-year-old woman had recurrent fractures and bone pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!