Synapsins are a family of synaptic vesicle phosphoproteins regulating synaptic transmission and plasticity. genes are major epilepsy susceptibility genes in humans. Consistently, synapsin I/II/III triple knockout (TKO) mice are epileptic and exhibit severe impairments in phasic and tonic GABAergic inhibition that precede the appearance of the epileptic phenotype. These changes are associated with an increased strength of excitatory transmission that has never been mechanistically investigated. Here, we observed that an identical effect in excitatory transmission could be induced in wild-type (WT) Schaffer collateral-CA1 pyramidal cell synapses by blockade of GABA receptors (GABARs). The same treatment was virtually ineffective in TKO slices, suggesting that the increased strength of the excitatory transmission results from an impairment of GABA presynaptic inhibition. Exogenous stimulation of GABARs in excitatory autaptic neurons, where GABA spillover is negligible, demonstrated that GABARs were effective in inhibiting excitatory transmission in both WT and TKO neurons. These results demonstrate that the decreased GABA release and spillover, previously observed in TKO hippocampal slices, removes the tonic brake of presynaptic GABARs on glutamate transmission, making the excitation/inhibition imbalance stronger.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685732 | PMC |
http://dx.doi.org/10.18632/oncotarget.21405 | DOI Listing |
Molecules
December 2024
Chair for Integrated Systems and Photonics, Department of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany.
Biological neural circuits are based on the interplay of excitatory and inhibitory events to achieve functionality. Axons form long-range information highways in neural circuits. Axon pruning, i.
View Article and Find Full Text PDFJ Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, 3-39-22 Showa-machi, Maebashi, Gunma 371-8514, Japan.
Constitutively active mutants of BRAF cause cardio-facio-cutaneous (CFC) syndrome, characterized by growth and developmental defects, cardiac malformations, facial features, cutaneous manifestations, and mental retardation. An animal model of human CFC syndrome, the systemic BrafQ241R/+ mutant mouse, has been reported to exhibit multiple CFC syndrome-like phenotypes. In this study, we analyzed the effects of Braf mutations on neural function, separately from their effects on developmental processes.
View Article and Find Full Text PDFBiomolecules
December 2024
Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
Nociceptive information is transmitted by action potentials (APs) through primary afferent neurons from the periphery to the central nervous system. Voltage-gated Na channels are involved in this AP production, while transient receptor potential (TRP) channels, which are non-selective cation channels, are involved in receiving and transmitting nociceptive stimuli in the peripheral and central terminals of the primary afferent neurons. Peripheral terminal TRP vanilloid-1 (TRPV1), ankylin-1 (TRPA1) and melastatin-8 (TRPM8) activation produces APs, while central terminal TRP activation enhances the spontaneous release of L-glutamate from the terminal to spinal cord and brain stem lamina II neurons that play a pivotal role in modulating nociceptive transmission.
View Article and Find Full Text PDFNeurosci Lett
January 2025
Division of Anesthesiology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi Dori, Chuo-Ku, Niigata City, Niigata 951-8510, Japan. Electronic address:
Spinal cord injuries (SCIs) can lead to severe neuropathic pain and increased risk of myocardial infarction and heart failure; therefore, the use of analgesics against SCI-induced pain should be minimized because of their adverse effects on the cardiovascular system. Ivabradine, a blocker of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels, is used as a bradycardic agent, but recent studies focused on it as an analgesic agent for peripheral neuropathic pain. However, the analgesic effects of ivabradine on central neuropathic pain, such as SCI-induced pain, have not been examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!