Cigarette Smoking Triggers Colitis by IFN-γ CD4 T Cells.

Front Immunol

Department of Science in Korean Medicine, Kyung Hee University, Seoul, South Korea.

Published: October 2017

The increased incidence of Crohn's disease in smokers has been recently reported, suggesting a strong association of cigarette smoke (CS) with colitis. However, the mechanism of the action of CS on colitis has not yet been explored. Here, we demonstrate that CS exposure is sufficient to induce colitis in mice. Interestingly, the colitis is mainly mediated by Th1, but not Th17, responses. CD4 T-cell depletion or T-bet/IFN-γ deficiency protects against the development of colitis induced by CS. Additionally, IFN-γ-producing CD4 T cells play a substantial role in CS-induced colitis. The adoptive transfer (AT) of effector T cells from CS-exposed WT mice into colitis-prone mice caused these mice to develop colitis, while the AT of effector T cells from IFN-γ knock-out mice did not. These findings have implications for broadening our understanding of CS-induced pathology and for the development of novel therapeutic strategies to treat Crohn's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671659PMC
http://dx.doi.org/10.3389/fimmu.2017.01344DOI Listing

Publication Analysis

Top Keywords

colitis
8
cd4 cells
8
crohn's disease
8
effector cells
8
mice
5
cigarette smoking
4
smoking triggers
4
triggers colitis
4
colitis ifn-γ
4
ifn-γ cd4
4

Similar Publications

Ethnopharmacological Importance: Zhili decoction (ZLD) is a traditional Chinese medicine prescription for ulcerative colitis (UC). However, the mechanism by which ZLD exerts its therapeutic effects in the context of UC remains unclear.

Aim Of Study: The aim of this study was to investigate the effects of ZLD on the gut microbiota and related fecal metabolite levels using a mouse model of UC.

View Article and Find Full Text PDF

The primary intent of this manuscript is to ascertain the effect of cucurbitacin IIa on ulcerative colitis (UC) and illustrate the potential mechanisms based on intestinal barrier function and the PERK/ATF4/CHOP signaling pathway. The UC mouse model was constructed by drinking 3% dextran sulfate sodium (DSS) for 1 week. The colonic tissues were stained with HE to assess pathological changes.

View Article and Find Full Text PDF

L-Arginine-Modified Selenium Nanozymes Targeting M1 Macrophages for Oral Treatment of Ulcerative Colitis.

Small

January 2025

Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, P. R. China.

Ulcerative colitis (UC) involves persistent inflammation in the colon and rectum, with excessive reactive oxygen species (ROS) accumulation. This ROS buildup damages colonic epithelial cells and disrupts intestinal flora, worsening disease progression. Current antioxidant therapies are limited due to their instability in the gut and lack of targeting, hindering precise intervention at the lesion site.

View Article and Find Full Text PDF

Traditional colitis treatment strategies have issues such as side effects and poor lesion targeting. In this study, a milled black rice particle-stabilized Pickering emulsion (BR-5-DMN) has been developed as a delivery vehicle for 5-demethylnobiletin (5-DMN) to treat colitis. The alleviating effects of three 5-DMN delivery systems: BR-5-DMN, Tween 80 emulsion for upper gastrointestinal delivery, and soybean oil with most 5-DMN entering the colon were compared.

View Article and Find Full Text PDF

Background And Aim: Qualitative diagnosis of ulcerative colitis-associated neoplasia (UCAN) is crucial for surveillance colonoscopy in patients with ulcerative colitis (UC). Although the utility of magnifying endoscopy with narrow-band imaging (ME-NBI) in sporadic neoplasia diagnosis has been reported, its efficacy in UCAN remains unclear. This study aimed to evaluate the usefulness of ME-NBI for qualitative diagnosis of UCAN.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!