Bacterial immune systems, such as CRISPR-Cas or restriction-modification (R-M) systems, affect bacterial pathogenicity and antibiotic resistance by modulating horizontal gene flow. A model system for CRISPR-Cas regulation, the Type I-E system from , is silent under standard laboratory conditions and experimentally observing the dynamics of CRISPR-Cas activation is challenging. Two characteristic features of CRISPR-Cas regulation in are cooperative transcription repression of gene and CRISPR array promoters, and fast non-specific degradation of full length CRISPR transcripts (pre-crRNA). In this work, we use computational modeling to understand how these features affect the system expression dynamics. Signaling which leads to CRISPR-Cas activation is currently unknown, so to bypass this step, we here propose a conceptual setup for expression activation, where genes are put under transcription control typical for a restriction-modification (R-M) system and then introduced into a cell. Known transcription regulation of an R-M system is used as a proxy for currently unknown CRISPR-Cas transcription control, as both systems are characterized by high cooperativity, which is likely related to similar dynamical constraints of their function. We find that the two characteristic CRISPR-Cas control features are responsible for its temporally-specific dynamical response, so that the system makes a steep (switch-like) transition from OFF to ON state with a time-delay controlled by pre-crRNA degradation rate. We furthermore find that cooperative transcription regulation qualitatively leads to a cross-over to a regime where, at higher pre-crRNA processing rates, crRNA generation approaches the limit of an infinitely abrupt system induction. We propose that these dynamical properties are associated with rapid expression of CRISPR-Cas components and efficient protection of bacterial cells against foreign DNA. In terms of synthetic applications, the setup proposed here should allow highly efficient expression of small RNAs in a narrow time interval, with a specified time-delay with respect to the signal onset.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5675862 | PMC |
http://dx.doi.org/10.3389/fmicb.2017.02139 | DOI Listing |
Microorganisms
December 2024
Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
Antimicrobial resistance (AMR) represents a critical global health threat, and a thorough understanding of resistance mechanisms in is needed to guide effective treatment interventions. This review explores recent advances for investigating AMR in , including machine learning for resistance pattern analysis, laboratory evolution to generate resistant mutants, mutant library construction, and genome sequencing for in-depth characterization. Key resistance mechanisms are discussed, including drug inactivation, target modification, altered transport, and metabolic adaptation.
View Article and Find Full Text PDFNat Commun
January 2025
The Picower Institute for Learning and Memory, MIT, Cambridge, MA, USA.
Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.
View Article and Find Full Text PDFCells
January 2025
Jules Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
Dominant optic atrophy (DOA) is the most commonly inherited optic neuropathy. The majority of DOA is caused by mutations in the gene, which encodes a dynamin-related GTPase located to the mitochondrion. OPA1 has been shown to regulate mitochondrial dynamics and promote fusion.
View Article and Find Full Text PDFSci Rep
January 2025
Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Molecular Biosciences, Wenner-Gren Institute, Stockholm University, Stockholm, SE 106 91, Sweden.
Bacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!