Biological rhythms lie at the center of regulatory schemes that control many aspects of living systems. At the cellular level, meaningful responses to external stimuli depend on propagation and quenching of a signal to maintain vigilance for subsequent stimulation or changes that serve to shape and modulate the response. The hypothalamus-pituitary-gonad endocrine axis that controls reproductive development and function relies on control through rhythmic stimulation. Central to this axis is the pulsatile stimulation of the gonadotropes by hypothalamic neurons through episodic release of the neuropeptide gonadotropin-releasing hormone. Alterations in pulsatile stimulation of the gonadotropes result in differential synthesis and secretion of the gonadotropins LH and FSH and changes in the expression of their respective hormone subunit genes. The requirement to amplify signals arising from activation of the gonadotropin-releasing hormone (GnRH) receptor and to rapidly quench the resultant signal to preserve an adaptive response suggests the need for rapid activation and feedback control operating at the level of intracellular signaling. Emerging data suggest that reactive oxygen species (ROS) can fulfill this role in the GnRH receptor signaling through activation of MAP kinase signaling cascades, control of negative feedback, and participation in the secretory process. Results obtained in gonadotrope cell lines or other cell models indicate that ROS can participate in each of these regulatory cascades. We discuss the potential advantage of reactive oxygen signaling for modulating the gonadotrope response to GnRH stimulation and the potential mechanisms for this action. These observations suggest further targets of study for regulation in the gonadotrope.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5671645 | PMC |
http://dx.doi.org/10.3389/fendo.2017.00286 | DOI Listing |
Physiol Plant
January 2025
College of Life Sciences/ College of Agriculture, Yangtze University, Jingzhou, China.
Rac/Rop proteins, a kind of unique small GTPases in plants, play crucial roles in plant growth and development and in response to abiotic and biotic stresses. However, it is poorly understood whether cotton Rac/Rop protein genes are involved in mediating cotton resistance to Verticillium dahliae. Here, we focused on the function and mechanism of cotton Rac/Rop gene GhRac9 in the defense response to Verticillium dahliae infection.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Veterinary Medicine, University of Teramo, Via Renato Balzarini 1, 64100, Teramo, Italy.
Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.
View Article and Find Full Text PDFJ Pathol Clin Res
January 2025
State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, PR China.
CXC chemokine receptor 4 (CXCR4) and programmed cell death-ligand 1 (PD-L1) are two critical molecules involved in the tumor immune microenvironment. However, the impact of platinum drugs, such as cisplatin, on CXCR4 or PD-L1 expression and the underlying mechanisms in gastric cancer (GC) remain unknown. Moreover, the correlation between their expression levels in GC remains elusive.
View Article and Find Full Text PDFChembiochem
January 2025
Xinzhou Normal University, Department of Chemistry, CHINA.
As one of the essential components of reactive oxygen species (ROS), peroxynitrite (ONOO-) plays an indispensable role in redox homeostasis and signal transduction processes, and its deviant levels are associated with numerous clinical diseases. Therefore, accurate and rapid detection of intracellular ONOO- levels is crucial for revealing its role in physiological and pathological processes. Herein, we constructed a ratiometric fluorescent probe to detect ONOO- levels in biological systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!