Fragile X Syndrome (FXS) is the most common form of intellectual disability and a primary cause of autism. It originates from the lack of the Fragile X Mental Retardation Protein (FMRP), which is an RNA-binding protein encoded by the Fragile X Mental Retardation Gene 1 () gene. Multiple roles have been attributed to this protein, ranging from RNA transport (from the nucleus to the cytoplasm, but also along neurites) to translational control of mRNAs. Over the last 20 years many studies have found a large number of FMRP mRNA targets, but it is still not clear which are those playing a critical role in the etiology of FXS. So far, no therapy for FXS has been found, making the quest for novel targets of considerable importance. Several pharmacological approaches have been attempted, but, despite some promising preclinical results, no strategy gave successful outcomes, due either to the induction of major side effects or to the lack of improvement of the phenotypes. However, these studies suggested that, in order to measure the effectiveness of a specific treatment, trials should be redesigned and new endpoints defined in FXS patients. Nevertheless, the search for new therapeutic targets for FXS is very active. In this context, the advances in animal modeling, coupled with better understanding of neurobiology and physiopathology of FXS, are of crucial importance in developing new selected treatments. Here, we discuss the pathways that were recently linked to the physiopathology of FXS (mGluR, GABAR, insulin, Insulin-like Growth Factor 1 (IGF-1), MPP-9, serotonin, oxytocin and endocannabinoid signaling) and that suggest new approaches to find an effective therapy for this disorder. Our goal with this review article is to summarize some recent relevant findings on FXS treatment strategies in order to have a clearer view of the different pathways analyzed to date emphasizing those shared with other synaptic disorders.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681520 | PMC |
http://dx.doi.org/10.3389/fnsyn.2017.00015 | DOI Listing |
Stem Cells
January 2025
Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556 IN, USA.
Myocardial infarction can lead to the loss of billions of cardiomyocytes, and while cell-based therapies are an option, immature nature of in vitro-generated human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (iCMs) is a roadblock to their development. Existing iPSC differentiation protocols don't go beyond producing fetal iCMs. Recently, adult extracellular matrix (ECM) was shown to retain tissue memory and have some success driving tissue-specific differentiation in unspecified cells in various organ systems.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
January 2025
Department of Medical Biostatistics, Soonchunhyang University Hospital, Seoul, Korea.
Background: Tegoprazan (TPZ), a potassium-competitive acid blocker with potent gastric acid-suppressing activity, may be a potential agent for treating Helicobacter pylori infection. The study aimed to evaluate the efficacy of TPZ-based therapy for H. pylori eradication compared with proton pump inhibitor (PPI)-based therapy.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFInt J Neuropsychopharmacol
January 2025
Center for Drug Clinical Research, Shanghai University of Traditional Chinese Medicine, No.1200 Cailun Road, Shanghai 201203, China.
Objective: This study aims to quantitatively evaluate the efficacy and safety of various treatment regimens for treatment-resistant depression (TRD) across oral, intravenous, and intranasal routes to inform clinical guidelines.
Methods: A systematic review identified randomized controlled trials on TRD, with efficacy measured by changes in the Montgomery-Åsberg Depression Rating Scale (MADRS). We developed pharmacodynamic and covariate models for different administration routes, using Monte Carlo simulations to estimate efficacy distribution.
Anal Chem
January 2025
School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an 710072, China.
Lymphoma is a malignant cancer characterized by a rapidly increasing incidence, complex etiology, and lack of obvious early symptoms. Efficient theranostics of lymphoma is of great significance in improving patient outcomes, empowering informed decision-making, and driving medical innovation. Herein, we developed a multifunctional nanoplatform for precise optical imaging and therapy of lymphoma based on a new photosensitizer (1-oxo-1-benzoo[de]anthracene-2,3-dicarbonitrile-triphenylamine (OBADC-TPA)).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!