Striatal cholinergic interneurons, the so-called tonically active neurons (TANs), pause their firing in response to sensory cues and rewards during classical conditioning and instrumental tasks. The respective pause responses observed can demonstrate many commonalities, such as constant latency and duration, synchronous occurrence in a population of cells, and coincidence with phasic activities of midbrain dopamine neurons (DANs) that signal reward predictions and errors. Pauses can however also show divergent properties. Pause latencies and durations can differ in a given TAN between appetitive vs. aversive outcomes in classical conditioning, initial excitation can be present or absent, and a second pause can variably follow a rebound. Despite more than 20 years of study, the functions of these pause responses are still elusive. Our understanding of pause function is hindered by an incomplete understanding of how pauses are generated. In this mini-review article, we compare pause types, as well as current key hypotheses for inputs underlying pauses that include dopamine-induced inhibition through D-receptors, a GABA input from ventral tegmental area, and a prolonged afterhyperpolarization induced by excitatory input from the cortex or from the thalamus. We review how each of these mechanisms alone explains some but not all aspects of pause responses. These mechanisms might need to operate in specific but variable sets of sequences to generate a full range of pause responses. Alternatively, these mechanisms might operate in conjunction with an underlying control mechanism within cholinergic interneurons which could potentially provide a framework to generate the common themes and variations seen amongst pause responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5670143 | PMC |
http://dx.doi.org/10.3389/fnsys.2017.00080 | DOI Listing |
Sleep Breath
January 2025
Department of Cardiac and Vascular Diseases, Jagiellonian University Medical College, John Paul II Hospital, Prądnicka 80, Kraków, 31-202, Poland.
Background: Obstructive sleep apnoea (OSA) may lead to heart rhythm abnormalities including bradycardia. Our aim was to ascertain clinical and echocardiographic parameters in patients with OSA in whom severe bradycardia was detected in an outpatient setting, as well as to evaluate the efficacy of CPAP therapy on heart rate normalization at the early stages of treatment.
Methods: Fifteen patients mild, moderate or severe OSA and concomitant bradycardia were enrolled.
J Physiol Sci
January 2025
Experimental Physiology and Biochemistry Laboratory. Physical Education and Sport Center, Federal University of Espirito Santo, Vitoria, Brazil. Electronic address:
Background/objectives: Myocardial infarction (MI) frequently leads to cardiac remodeling and failure with impaired life quality, playing an important role in cardiovascular deaths. Although physical exercise is a well-recognized effective non-pharmacological therapy for cardiovascular diseases, the effects of strength training (ST) on the structural and functional aspects of cardiac remodeling need to be further documented. In this study, we aimed to investigate the role of a linear block ST protocol in the rat model of MI.
View Article and Find Full Text PDFbioRxiv
January 2025
Dept. of Biochemistry, University of Colorado; Boulder, CO, 80303, USA.
CDK7 regulates RNA polymerase II (RNAPII) initiation, elongation, and termination through incompletely understood mechanisms. Because contaminating kinases precluded CDK7 analysis with nuclear extracts, we completed biochemical assays with purified factors. Reconstitution of RNAPII transcription initiation showed CDK7 inhibition slowed and/or paused RNAPII promoter-proximal transcription, which reduced re-initiation.
View Article and Find Full Text PDFNeurosci Biobehav Rev
January 2025
Arizona State University, United States.
Substance abuse research depends on precise and sensitive assessments of reinforcer efficacy in animal models. However, conventional methods often lack theoretical rigor and specificity to support these assessments. To address these gaps, the Modular Maximization Theory (MMT) is introduced as a comprehensive framework for understanding instrumental behavior.
View Article and Find Full Text PDFInt J Nurs Stud
December 2024
School of Nursing and Midwifery, Edith Cowen University, Australia. Electronic address:
Background: Recognition and response to clinical deterioration of hospitalised patients is a worldwide health priority area. In response to this concern, international bodies have implemented early warning systems to help clinicians keep people safe and prevent patient deterioration. Registered nurses hold a significant role in managing care provision and utilise early warning system tools to support their clinical judgement when making decisions about patient care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!