AI Article Synopsis

  • Respiratory syncytial virus (RSV) is a significant cause of severe respiratory illness in infants, and the host's genome plays a key role in susceptibility to the disease.
  • A study sequenced the genes of 54 hospitalized RSV patients and compared them to control groups to identify genetic variants linked to susceptibility, highlighting SNP rs199665292 in the OR gene as a strong candidate.
  • The research also suggests that genetic variants in HLA genes and mucin genes are associated with RSV infection, particularly emphasizing the potential role of olfactory and taste receptors in viral diseases.

Article Abstract

Respiratory syncytial virus (RSV) is an important cause of serious lower respiratory tract disease in infants. Several studies have shown evidence pointing to the genome of the host as an important factor determining susceptibility to respiratory disease caused by RSV. We sequenced the complete exomes of 54 patients infected by RSV that needed hospitalization due to development of severe bronchiolitis. The Iberian sample (IBS) from The 1000 Genomes Project (1000G) was used as control group; all the association results were pseudo-replicated using other 1000G-European controls and Spanish controls. The study points to SNP rs199665292 in the olfactory receptor (OR) gene OR13C5 as the best candidate variant (P-value = 1.16 × 10; OR = 5.56). Genetic variants at HLA genes (HLA-DQA1, HLA-DPB1), and in the mucin 4 gene (MUC4) also emerge as susceptibility candidates. By collapsing rare variants in genes and weighing by pathogenicity, we obtained confirmatory signals of association in the OR gene OR8U1/OR8U8, the taste receptor TAS2R19, and another mucin gene (MUC6). Overall, we identified new predisposition variants and genes related to RSV infection. Of special interest is the association of RSV to olfactory and taste receptors; this finding is in line with recent evidence pointing to their role in viral infectious diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698448PMC
http://dx.doi.org/10.1038/s41598-017-15752-4DOI Listing

Publication Analysis

Top Keywords

susceptibility respiratory
8
respiratory syncytial
8
syncytial virus
8
evidence pointing
8
mucin gene
8
variants genes
8
rsv
5
exome sequencing
4
sequencing reveals
4
reveals candidate
4

Similar Publications

Standard-of-care influenza vaccines contain antigens that are typically derived from components of wild type (WT) influenza viruses. Often, these antigens elicit strain-specific immune responses and are susceptible to mismatch in seasons where antigenic drift is prevalent. Thanks to advances in viral surveillance and sequencing, influenza vaccine antigens can now be optimized using computationally derived methodologies and algorithms to enhance their immunogenicity.

View Article and Find Full Text PDF

spp. are facultative pathogens that contribute to the pathogenesis of multiple bovine diseases, including the bovine respiratory disease complex, and have been shown to form biofilms. Biofilm formation is associated with increased antibiotic resistance in many organisms, but accurate determination of antimicrobial susceptibility in biofilms is challenging.

View Article and Find Full Text PDF

The Human Nasal Microbiome: A Perspective Study During the SARS-CoV-2 Pandemic in Malta.

Microorganisms

December 2024

The BioArte Ltd., Life Science Park, Triq San Giljan, 3000 San Gwann, Malta.

The human respiratory tract is colonized by a complex microbial community that helps maintain respiratory health and plays a crucial role in defending the host from infections. Respiratory viruses have been demonstrated to alter microbiota composition, resulting in opportunistic species expansion, and increasing the disease severity and host susceptibility to bacterial co-infections. This study aims to examine the compositional differences in the nasal microbiota between SARS-CoV-2-infected and non-infected patients.

View Article and Find Full Text PDF

Impact of Sample Storage Time and Temperature on the Stability of Respiratory Viruses and Enteric Viruses in Wastewater.

Microorganisms

November 2024

Public Health Laboratory, Alberta Precision Laboratories, Edmonton, AB T6G 2J2, Canada.

Wastewater-based surveillance (WBS) has been widely used to track SARS-CoV-2 as well as many other viruses in communities during the COVID pandemic and post-pandemic. However, it is still not clear how temperature and storage time would influence the stability of viruses in wastewater. In this study, we assessed the stability of SARS-CoV-2, pepper mild mottle virus (PMMoV), influenza viruses A (IAV) and B (IBV), respiratory syncytial virus (RSV), and enteric viruses in raw wastewater stored at room temperature, 4 °C, and -20 °C for 3 and 6 days.

View Article and Find Full Text PDF

Recent advances in genetics and epigenetics have provided critical insights into the pathogenesis of both idiopathic and non-idiopathic interstitial lung diseases (ILDs). Mutations in telomere-related genes and surfactant proteins have been linked to familial pulmonary fibrosis, while variants in MUC5B and TOLLIP increase the risk of ILD, including idiopathic pulmonary fibrosis and rheumatoid arthritis-associated ILD. Epigenetic mechanisms, such as DNA methylation, histone modifications, and non-coding RNAs such as miR-21 and miR-29, regulate fibrotic pathways, influencing disease onset and progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!