The development of synthetic protocols for the preparation of highly loaded metal nanoparticle-supported catalysts has received a great deal of attention over the last few decades. Independently controlling metal loading, nanoparticle size, distribution, and accessibility has proven challenging because of the clear interdependence between these crucial performance parameters. Here we present a stepwise methodology that, making use of a cobalt-containing metal organic framework as hard template (ZIF-67), allows addressing this long-standing challenge. Condensation of silica in the Co-metal organic framework pore space followed by pyrolysis and subsequent calcination of these composites renders highly loaded cobalt nanocomposites (~ 50 wt.% Co), with cobalt oxide reducibility in the order of 80% and a good particle dispersion, that exhibit high activity, C5 + selectivity and stability in Fischer-Tropsch synthesis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698480 | PMC |
http://dx.doi.org/10.1038/s41467-017-01910-9 | DOI Listing |
RSC Adv
January 2025
Laboratory of Clean Low-Carbon Energy, Department of Thermal Science and Energy Engineering, University of Science and Technology of China Hefei 230023 PR China.
Crafting highly dispersed active metal sites on catalysts is an optimal method for improving the catalytic reactivity and stability, as it would improve atomic utilization efficiency, enhance reactant adsorption and activation ability through unique geometric and electronic properties. In this study, two synthesis methods were employed (ammonia evaporation (AE) and the impregnation method (IM)) to load Rh species onto the ZSM-5 support in order to attain tunable dispersivity, during which a 1.25-fold increase in the total yield of liquid oxygenated products (32 433.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Optoelectronic Information of Science and Engineering, School of Science, Jiangsu University of Science and Technology, Zhenjiang 212100, China.
Reasonable design of hydrogen evolution reaction (HER) electrocatalysts with low Pt loading and excellent catalytic performance is a key challenge in finding efficient and cost attractive catalysts. Pt with its unique d-electrons provides new opportunities for the development of HER catalysts when it forms compounds with highly earth-abundant C. Herein, we focused on designing highly efficient catalysts composed of Pt and C elements using first-principles structure search simulations, identifying four stability PtC monolayers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
South China Normal University, Chemistry, 55 W Zhongshan Rd, 510006, Guangzhou, CHINA.
Lithium-sulfur (Li-S) batteries has been regarded as one of the most promising next-generation energy storage systems due to their high theoretical energy density. However, the practical application of Li-S batteries is still hindered by the unstable cathode-electrolyte interphase and the early passivation of charge product (Li2S), leading to poor cycling stability and low S utilization. Herein, we propose an electrolyte engineering strategy using highly solvating hexamethylphosphoramide (HMPA) as a co-solvent to elucidate the dissociation-precipitation chemistry of lithium polysulfides (LiPSs).
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
January 2025
School of Studies in Pharmaceutical Sciences, Jiwaji University, Gwalior, India.
Ulcerative colitis, a chronic inflammatory condition of the colon, requires precise and targeted treatment, and polysaccharides, with their pH responsiveness and biodegradability, offer an innovative approach for colon-specific drug delivery. This study aims to develop a highly precise drug delivery system with enhanced therapeutic and targeting efficiency for ulcerative colitis, focusing on the preparation, optimisation, and evaluation of dual cross-linked mesalamine-loaded sericin-pectin (DSPs) micro-beads. These beads utilise the pH-responsive and microflora biodegradability properties of polysaccharides for targeted colon delivery, employing the Response Surface Methodology.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320 Thiais, France. Electronic address:
In the present investigation, redox-responsive-based dextran carriers were developed for the controlled release of hydrophobic molecules via a reducing agent naturally present in cells, namely glutathione. In this sense, dextran was modified with a thiol derivative. The roles of the hydrophilic segments in the molecular self-organisation of polysaccharide derivatives into nanoparticles were investigated by varying the average dextran molar mass.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!