Background: There is growing concern that malaria vector resistance to pyrethroid insecticides may reduce the effectiveness of long-lasting insecticidal nets (LLINs). Combination LLINs are designed to control susceptible and pyrethroid-resistant mosquito populations through a mixture of pyrethroid with piperonyl butoxide (PBO) synergist. A cluster randomized trial with entomology outcome measures was conducted in Mali to determine the added benefit over mono-treated pyrethroid predecessors. Four LLIN treatments; permethrin + PBO, permethrin, deltamethrin + PBO, and deltamethrin, were randomly allocated to four villages each (16 villages total) and distributed to cover every sleeping place. Entomological monitoring of indoor Anopheles resting densities, host preference, vector longevity, and sporozoite rates were monitored every 2 months over 2 years in 2014 and 2015.

Results: Bottle bioassays confirmed permethrin and deltamethrin resistance in Anopheles gambiae sensu lato (s.l.), (the predominant species throughout the study) with pre-exposure to PBO indicating partial involvement of oxidases. Between 2014 and 2015 the mean indoor resting density was greater in the deltamethrin + PBO LLIN arm than the deltamethrin LLIN arm at 3.05 (95% CI 3.00-3.10) An. gambiae s.l. per room per day compared with 1.9 (95% CI 1.87-1.97). There was no significant difference in sporozoite rate at 3.97% (95% CI 2.91-5.02) for the deltamethrin LLIN arm and 3.04% (95% CI 2.21-3.87) for deltamethrin + PBO LLIN arm (P = 0.17). However, when analysed by season there was some evidence that the sporozoite rate was lower in the deltamethrin + PBO LLIN arm than deltamethrin LLIN arm during the rainy/high malaria transmission seasons at 1.95% (95% CI 1.18-2.72) and 3.70% (95% CI 2.56-4.84) respectively (P = 0.01).

Conclusions: While there was some evidence that An. gambiae s.l. sporozoite rates were lower in villages with deltamethrin + PBO LLINs during the high malaria transmission seasons of 2014-2015, there was no reduction in parity rates or indoor resting densities. There was also no evidence that permethrin + PBO LLINs provided any improved control when compared with permethrin LLINs. Combination nets may have a greater impact in areas where mixed function oxidases play a more important role in pyrethroid resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5698970PMC
http://dx.doi.org/10.1186/s12936-017-2124-1DOI Listing

Publication Analysis

Top Keywords

llin arm
24
deltamethrin + pbo llin
12
deltamethrin llin
12
long-lasting insecticidal
8
insecticidal nets
8
pbo synergist
8
llins combination
8
resting densities
8
sporozoite rates
8
indoor resting
8

Similar Publications

The effect of next-generation, dual-active-ingredient, long-lasting insecticidal net deployment on insecticide resistance in malaria vectors in Benin: results of a 3-year, three-arm, cluster-randomised, controlled trial.

Lancet Planet Health

November 2024

Centre de Recherche Entomologique de Cotonou, Cotonou, Benin; Faculty of Infectious and Tropical Diseases, Department of Disease Control, London, UK; Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), University of Nevada, Las Vegas, NV, USA; Department of Environmental and Occupational Health, University of Nevada, Las Vegas, Las Vegas, NV, USA. Electronic address:

Background: Insecticide resistance among malaria vector species now occurs in 84 malaria-endemic countries and territories worldwide. Novel vector-control interventions, including long-lasting insecticidal nets (LLINs) that incorporate new active ingredients with distinct modes of action, are urgently needed to delay the evolution and spread of resistance and to alleviate reversals in malaria-control gains. We aimed to assess the longitudinal effect of two dual-active-ingredient LLINs on insecticide resistance during a cluster-randomised, controlled trial in Benin.

View Article and Find Full Text PDF
Article Synopsis
  • Next-generation insecticide-treated bed nets (ITNs), which combine new insecticides or add synergists, are essential for fighting malaria, especially in regions with mosquito resistance to traditional pyrethroid nets.
  • A study in Misungwi, Tanzania, tested the effectiveness of three types of these new nets over three years, comparing them against the standard Interceptor net; tests revealed they showed better efficacy against malaria-carrying mosquitoes.
  • While over 80% of the new nets were effective after three years for susceptible mosquitoes, their effectiveness against resistant strains declined over time, indicating the need for ongoing research and potential replacements for long-term malaria control.
View Article and Find Full Text PDF

Background: The recent reduction in malaria burden in Côte d'Ivoire is largely attributable to the use of long-lasting insecticidal nets (LLINs). However, this progress is threatened by insecticide resistance and behavioral changes in Anopheles gambiae sensu lato (s.l.

View Article and Find Full Text PDF

Background: Despite the huge global effort , there has been an increase in malaria morbidity and mortality in sub-Saharan Africa since 2015, from 212 million cases and 429,000 deaths in 2015 to 241 million cases and 627,000 deaths in 2020 mainly because of resistance to insecticide. Therefore, advancing innovative approaches is the only sustainable way to fight malaria.

Methods: Taking advantage of the behavior of mosquitoes around the net, which is almost 70-90% concentrated on the roof, we have developed a two-compartment mosquito bednet, the so-called T-Net for mass mosquito trapping and killing.

View Article and Find Full Text PDF

Background: The massive scale-up of long-lasting insecticidal nets (LLIN) has led to a major reduction in malaria burden in many sub-Saharan African (SSA) countries. The World Health Organization (WHO) has recently issued a strong recommendation for the use of chlorfenapyr-pyrethroid LLINs compared to standard pyrethroid-only LLINs in areas of high insecticide resistance intensity. However, there is still a lack of conclusive evidence on the efficacy of piperonyl butoxide-pyrethroid (PBO-py) LLINs, especially in West Africa, where vector composition and resistance mechanisms may be different from vectors in East Africa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!