Background: microRNAs (miRNAs) are important regulators in plant growth and development. miR159 is a conserved miRNA among different plant species and has various functions in plants. Studies on miR159 are mostly done on model plant, Arabidopsis thaliana. In rice, studies on miR159 were either based upon genome-wide expression analyses focused upon responses to different nitrogen forms and abiotic stress or upon phenotypic studies of transgenic plants overexpressing its precursor. STTM (Short Tandem Target Mimic) is an effective tool to block the activity of endogenous mature miRNA activity in plant. Therefore, specific roles of miR159 in rice could be explored by down regulating miR159 through STTM.

Results: In this study, expression of mature miR159 was successfully suppressed by STTM which resulted in the increased expressions of its two targets genes, OsGAMYB and OsGAMYBL1 (GAMYB-LIKE 1). Overall, STTM159 plants exhibited short stature along with smaller organ size and reduction in stem diameter, length of flag leaf, main panicle, spikelet hulls and grain size. Histological analysis of stem, leaf and mature spikelet hull showed the reduced number of small vascular bundles (SVB), less number of small veins (SV) between two big veins (LV) and less cell number in outer parenchyma. Gene Ontology (GO) enrichment analysis of differentially expressed genes between wild type plants and STTM159 transgenic plants showed that genes involved in cell division, auxin, cytokinin (CK) and brassinosteroids (BRs) biosynthesis and signaling are significantly down-regulated in STTM159 plants.

Conclusion: Our data suggests that in rice, miR159 positively regulates organ size, including stem, leaf, and grain size due to the promotion of cell division. Further analysis from the RNA-seq data showed that the decreased cell divisions in STTM159 transgenic plants may result, at least partly from the lower expression of the genes involved in cell cycle and hormone homeostasis, which provides new insights of rice miR159-specific functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5699021PMC
http://dx.doi.org/10.1186/s12870-017-1171-7DOI Listing

Publication Analysis

Top Keywords

transgenic plants
12
studies mir159
8
organ size
8
grain size
8
stem leaf
8
number small
8
sttm159 transgenic
8
genes involved
8
involved cell
8
cell division
8

Similar Publications

Suppressing Tymovirus replication in plants using a variant of ubiquitin.

PLoS Pathog

January 2025

Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.

RNA viruses have evolved numerous strategies to overcome host resistance and immunity, including the use of multifunctional proteases that not only cleave viral polyproteins during virus replication but also deubiquitinate cellular proteins to suppress ubiquitin (Ub)-mediated antiviral mechanisms. Here, we report an approach to attenuate the infection of Arabidopsis thaliana by Turnip Yellow Mosaic Virus (TYMV) by suppressing the polyprotein cleavage and deubiquitination activities of the TYMV protease (PRO). Performing selections using a library of phage-displayed Ub variants (UbVs) for binding to recombinant PRO yielded several UbVs that bound the viral protease with nanomolar affinities and blocked its function.

View Article and Find Full Text PDF

The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.

View Article and Find Full Text PDF

Glutathione reductase (GR) maintains the cellular redox state by reducing oxidized glutathione to glutathione (GSH), which regulates antioxidant defense. Additionally, GR plays an essential role in photosynthesis; however, the mechanism by which GR regulates photosystem II (PSII) is largely unknown. We identified six, three, and three GR genes in Gossypium hirsutum, Gossypium arboreum, and Gossypium raimondii, respectively.

View Article and Find Full Text PDF

Light is essential for photosynthesis; however, excess light can increase the accumulation of photoinhibitory reactive oxygen species that reduce photosynthetic efficiency. Plants have evolved photoprotective non-photochemical quenching (NPQ) pathways to dissipate excess light energy. In tobacco and soybean (C plants), overexpression of three NPQ genes, e ( V DE), ( P sbS), and ( Z EP), hereafter VPZ, resulted in faster NPQ induction and relaxation kinetics, and increased crop yields in field conditions.

View Article and Find Full Text PDF

Spider silk, especially dragline silk from golden silk spiders (Trichonephila clavipes), is an excellent natural material with remarkable mechanical properties. Many studies have focused on the use of plants as biofactories for the production of recombinant spider silk. However, the effects of this material on the mechanical properties or physiology of transgenic plants remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!