The epithelial-mesenchymal transition (EMT) is a phenotype transdifferentiation of epithelial into mesenchymal cells and contributes to pulmonary fibrotic disease. SMAD-dependent pathway has been reported to play a key role in the multiple fibrotic diseases. We hypothesized that TGF-β/SMAD signaling could cross-interact with BMP/SMAD signaling pathways in silica-induced EMT in A549 cells. We investigated that the ability of silica-induced EMT in A549 cells, and this process was significantly inhibited by SB431542 through up-regulation of Vimentin, α-SMA and collagen type I expression and down-regulation of E-cadherin expression. Whereas BMP/SMAD inhibition using LDN193189 enhanced EMT. In addition, we also demonstrated that SB431542 could enhance BMP/SMAD signaling pathways in silica-induced EMT and vice versa. Therefore, our study provides evidence that the TGF-β/SMAD pathway was a crucial regulator in silica-induced EMT and that SB431542 could prevent the EMT. More importantly, we have identified that the interplay of TGF-β/SMAD and BMP/SMAD pathways in silica-induced EMT in A549 cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15376516.2017.1407978 | DOI Listing |
NPJ Biofilms Microbiomes
December 2024
Molecular Nutrition Branch, National Engineering Research Center of Rice and By-product Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, 410004, Hunan, P.R. China.
Lung diseases often coincide with imbalances in gut microbiota, but the role of gut microbiota in pulmonary fibrosis (PF) remains unclear. This study investigates the impact of gut microbiota and their metabolites on PF. Serum and lung tissues of normal, bleomycin (BLM)- and silica-induced mice showed significant differences in gut microbiota.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
Anhui Province Key Laboratory of Occupational Health, Anhui No. 2 Provincial People's Hospital, Hefei 230041, China. Electronic address:
Silicosis is an occupational disease caused by exposure to silica characterized by pulmonary inflammation and fibrosis, for which there is a lack of effective drugs. Glycyrrhetinic acid 3-O-β-D-glucuronide (GAMG) can treat silicosis due to its anti-inflammatory and anti-fibrotic properties. Here, the effect of therapeutic interventions of GAMG was evaluated in early-stage and advanced silicosis mouse models.
View Article and Find Full Text PDFBraz J Med Biol Res
September 2024
School of Public Health, North China University of Science and Technology, Tangshan, China.
Silicosis is a systemic disease caused by long-term exposure to high concentrations of free silica dust particles in the workplace. It is characterized by a persistent inflammatory response, fibroblast proliferation, and excessive collagen deposition, leading to pulmonary interstitial fibrosis. Epithelial interstitial transformation (EMT) can cause epithelial cells to lose their tight junctions, cell polarity, and epithelial properties, thereby enhancing the properties of interstitial cells, which can lead to the progression of fibrosis and the formation of scar tissue.
View Article and Find Full Text PDFMitochondrion
September 2024
Department of Zoology, MMV Unit, Banaras Hindu University, Varanasi 221005, India. Electronic address:
Silicosis is an occupational disease of the lungs brought in by repeated silica dust exposures. Inhalation of crystalline silica leads to persistent lung inflammation characterized by lung lesions due to granuloma formation. The specific molecular mechanism has not yet been identified, though.
View Article and Find Full Text PDFFree Radic Biol Med
October 2024
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China. Electronic address:
Long non-coding RNAs play a key role in silicosis, a fatal fibrotic lung disease, and there is an urgent need to develop new treatment targets. Long intergenic non-protein-coding RNA 3047 (LINC03047) is associated with cancer, but its role and mechanism in the progression of silicosis require further elucidation. This study investigated the function of LINC03047 in the epithelial-mesenchymal transition (EMT) during silicosis progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!