d-Serine is an amino acid and can work as an agonist at the glycine sites of N-methyl-d-aspartate receptor (NMDAR). Interestingly, both types of glutamatergic modulators, NMDAR enhancers and blockers, can improve depression through common targets, namely alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionaic acid receptors (AMPARs) and mammalian target of rapamycin (mTOR). To elucidate the cellular signaling pathway underlying this counterintuitive observation, we activated NMDARs in rats by using d-serine. Saline, ketamine (NMDAR antagonist), and desipramine (tricyclic antidepressant) were used as controls. The antidepressant-like effects of all agents were evaluated using the forced swim test. The activation of the AMPAR-mTOR signaling pathway, release of brain-derived neurotrophic factor (BDNF), and alteration of AMPAR and NMDAR trafficking in the hippocampus of rats were examined. A single high dose of d-serine exerted an antidepressant-like effect that was mediated by rapid AMPAR-induced mTOR signaling pathway and increased BDNF proteins, identical to that of ketamine. Furthermore, in addition to the increased protein kinase A phosphorylation of the AMPAR subunit GluR1 (an indicator of AMPAR insertion in neurons), treatment with individual optimal doses of d-serine and ketamine also increased adaptin β2-NMDAR association (an indicator of the intracellular endocytic machinery and subsequent internalization of NMDARs). Desipramine did not influence these processes. Our study is the first to demonstrate an association between d-serine and ketamine; following adaptative regulation of AMPAR and NMDAR may lead to common changes of them. These findings provide novel targets for safer antidepressant agents with mechanisms similar to those of ketamine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.7b04217 | DOI Listing |
Biosens Bioelectron
January 2025
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China. Electronic address:
The exploration of the mitochondrial apoptotic pathway in living cells is of great significance for achieving tumor diagnosis and treatment. However, visualization of the mitochondrial apoptotic pathway induced by specific proteins has rarely been reported. In this paper, we designed and synthesized a fluorescent probe Cy-JQ1 based on the bromodomain-containing protein 4 (BRD4) inhibition.
View Article and Find Full Text PDFSci Adv
January 2025
Laboratory of Mitochondrial Biology and Metabolism, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
Although lipid-derived acetyl-coenzyme A (CoA) is a major carbon source for histone acetylation, the contribution of fatty acid β-oxidation (FAO) to this process remains poorly characterized. To investigate this, we generated mitochondrial acetyl-CoA acetyltransferase 1 (ACAT1, distal FAO enzyme) knockout macrophages. C-carbon tracing confirmed reduced FA-derived carbon incorporation into histone H3, and RNA sequencing identified diminished interferon-stimulated gene expression in the absence of ACAT1.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biochemistry, College of Life Science and Biotechnology, Brain Korea 21 Project, Yonsei University, Seoul 03722, Republic of Korea.
Until now, Hippo pathway-mediated nucleocytoplasmic translocation has been considered the primary mechanism by which yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) transcriptional coactivators regulate cell proliferation and differentiation via transcriptional enhanced associate domain (TEAD)-mediated target gene expression. In this study, however, we found that TAZ, but not YAP, is associated with the Golgi apparatus in macrophages activated via Toll-like receptor ligands during the resolution phase of inflammation. Golgi-associated TAZ enhanced vesicle trafficking and secretion of proinflammatory cytokines in M1 macrophage independent of the Hippo pathway.
View Article and Find Full Text PDFShock
February 2025
Department of Respiratory and Critical Care Medicine, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
Background: Ubiquitination and deubiquitination are involved in the progression of human diseases, including acute pneumonia. In this study, we aimed to explore the functions of ubiquitin-specific peptidase 9X-linked (USP9X) in lipopolysaccharide (LPS)-treated WI-38 cells. Methods: WI-38 cells were treated with LPS to induce the cellular damage and inflammation.
View Article and Find Full Text PDFPLoS One
January 2025
Physical Culture Institute Ludong University, City Yantai, Shandong Province, China.
The target of rapamycin(TOR)gene is closely related to metabolism and cellular aging, but it is unclear whether the TOR pathways mediate endurance exercise against the accelerated aging of skeletal muscle induced by high salt intake. In this study, muscular TOR gene overexpression and RNAi were constructed by constructing MhcGAL4/TOR-overexpression and MhcGAL4/TORUAS-RNAi systems in Drosophila. The results showed that muscle TOR knockdown and endurance exercise significantly increased the climbing speed, climbing endurance, the expression of autophagy related gene 2(ATG2), silent information regulator 2(SIR2), and pparγ coactivator 1(PGC-1α) genes, and superoxide dismutases(SOD) activity, but it decreased the expression of the TOR gene and reactive oxygen species(ROS) level, and it protected the myofibrillar fibers and mitochondria of skeletal muscle in Drosophila on a high-salt diet.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!