The world's coral reefs appear to be in a global decline, yet most previous research on coral reefs has taken place at depths shallower than 30 m. Mesophotic coral ecosystem (depths deeper than ~30 m) studies have revealed extensive, productive habitats and rich communities. Despite recent advances, mesophotic coral ecosystems remain understudied due to challenges with sampling at deeper depths. The few previous studies of mesophotic coral ecosystems have shown variation across locations in depth-specific species composition and assemblage shifts, potentially a response to differences in habitat or light availability/water clarity. This study utilized scuba to examine fish and benthic communities from shallow and upper mesophotic (to 45 m) zones of Flower Garden Banks National Marine Sanctuary (FGBNMS, 28°0'N; 93°50'W) from 2010-2012. Dominant planktivores were ubiquitous in shallow and upper mesophotic habitats, and comparisons with previous shallow research suggest this community distribution has persisted for over 30 years. Planktivores were abundant in shallow low-relief habitats on the periphery of the coral reef, and some of these sites that contained habitat transitioning from high to low relief supported high biomass of benthic predators. These peripheral sites at FGBNMS may be important for the trophic transfer of oceanic energy to the benthic coral reef. Distinct differences between upper mesophotic and shallow communities were also observed. These included greater overall fish (as well as apex predator) biomass in the upper mesophotic, differences in apex predator community composition between depth zones, and greater percent cover of algae, rubble, sand, and sponges in the upper mesophotic. Greater fish biomass in the upper mesophotic and similar fish community composition between depth zones provide preliminary support that upper mesophotic habitats at FGBNMS have the capacity to serve as refugia for the shallow-water reefs. Diving surveys of the upper mesophotic and shallow-water coral reef have revealed valuable information concerning the reef fish community in the northern Gulf of Mexico, with implications for the conservation of apex predators, oceanic coral reefs, and the future management of FGBNMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5697833PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0188598PLOS

Publication Analysis

Top Keywords

upper mesophotic
36
coral reef
16
fish community
12
community composition
12
shallow upper
12
mesophotic
12
coral reefs
12
mesophotic coral
12
coral
10
upper
9

Similar Publications

While recent technical breakthroughs have enabled advances in the description of reefs down to 150 m, the structure and depth zonation of deep-reef communities below 150 m remains largely unknown. Here, we present results from over 10 years of deep-reef fish surveys using human-occupied submersibles at four locations across the Caribbean Sea, constituting one of the only continuous reef-fish surveys from 10 to 480 m (1 site) and 40 to 300 m (3 sites). We identify four vertically stratified deep-reef fish communities between 40 and 300 m bordered by an altiphotic (0-10 m) and a deep-sea (300-480 m) community.

View Article and Find Full Text PDF

Population genetic analyses can provide useful data on species' regional connectivity and diversity which can inform conservation and restoration efforts. In this study, we quantified the genetic connectivity and diversity of Stephanocoenia intersepta corals from shallow (<30 m) to mesophotic (30-45 m) depths across Florida Keys National Marine Sanctuary. We generated single nucleotide polymorphism (SNP) markers to identify genetic structuring of shallow and mesophotic S.

View Article and Find Full Text PDF

Climate change projections for coral reefs are founded exclusively on sea surface temperatures (SST). While SST projections are relevant for the shallowest reefs, neglecting ocean stratification overlooks the striking differences in temperature experienced by deeper reefs for all or part of the year. Density stratification creates a buoyancy barrier partitioning the upper and lower parts of the water column.

View Article and Find Full Text PDF

Upper mesophotic reef fish assemblages at Bahía de Banderas, Mexico.

Biodivers Data J

March 2024

Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara, Zapopan, Jalisco, Mexico Departamento de Ecología Aplicada, CUCBA, Universidad de Guadalajara Zapopan, Jalisco Mexico.

There is no information on the species associated with the mesophotic reefs of Banderas Bay, located in the central Mexican Pacific. This study analysed the reef fish assemblage from three depths (50, 60 and 70 m) in three sampling sites of the southern submarine canyon of the Bay: Los Arcos, Bajo de Emirio and Majahuitas. Several analyses were performed to test the hypothesis that there are important differences in fish abundance and species composition between sites and depths.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers used eDNA metabarcoding to analyze seawater samples collected with a mini-remote operated vehicle (mini-ROV) in the Zamami Islands, finding success in identifying coral genera.
  • * While eDNA was detected more abundantly at shallower reefs, the study indicates that monitoring mesophotic corals using eDNA is feasible, though further technical advancements are necessary.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!