As model organism-based research shifts from forward to reverse genetics approaches, largely due to the ease of genome editing technology, a low frequency of abnormal phenotypes is being observed in lines with mutations predicted to lead to deleterious effects on the encoded protein. In zebrafish, this low frequency is in part explained by compensation by genes of redundant or similar function, often resulting from the additional round of teleost-specific whole genome duplication within vertebrates. Here we offer additional explanations for the low frequency of mutant phenotypes. We analyzed mRNA processing in seven zebrafish lines with mutations expected to disrupt gene function, generated by CRISPR/Cas9 or ENU mutagenesis methods. Five of the seven lines showed evidence of altered mRNA processing: one through a skipped exon that did not lead to a frame shift, one through nonsense-associated splicing that did not lead to a frame shift, and three through the use of cryptic splice sites. These results highlight the need for a methodical analysis of the mRNA produced in mutant lines before making conclusions or embarking on studies that assume loss of function as a result of a given genomic change. Furthermore, recognition of the types of adaptations that can occur may inform the strategies of mutant generation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5716581 | PMC |
http://dx.doi.org/10.1371/journal.pgen.1007105 | DOI Listing |
Unlabelled: Bacterial sRNAs together with the RNA chaperone Hfq post-transcriptionally regulate gene expression by affecting ribosome binding or mRNA stability. In the human pathogen , the causative agent of whooping cough, hundreds of sRNAs have been identified, but their roles in biology are mostly unknown. Here we characterize a Hfq-dependent sRNA (S17), whose level is dramatically higher in the virulence (Bvg ) mode.
View Article and Find Full Text PDFBiophys Physicobiol
September 2024
Department of Cell Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
Visceral organs in vertebrates are arranged with left-right asymmetry; for example, the heart is located on the left side of the body. Cilia at the node of mouse early embryos play an essential role in determining this left-right asymmetry. Using information from the anteroposterior axis, motile cilia at the central region of the node generate leftward nodal flow.
View Article and Find Full Text PDFOncol Lett
March 2025
Department of Radiotherapy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China.
Programmed death ligand 1 (PD-L1), an important immune checkpoint molecule, is abnormally activated in non-small cell lung cancer (NSCLC), which can interact with programmed death 1 to aid cancer cells in evading immune surveillance. Furthermore, tumor driver genes may be involved in the occurrence and development of NSCLC and have a potential role in PD-L1-mediated immune escape mechanisms. Therefore, the present study aimed to assess the behavioral and regulatory mechanisms by which circular RNA ENTPD7 (circENTPD7; hsa_circ_0019421) induces an immune response in the progression of NSCLC cells.
View Article and Find Full Text PDFiScience
January 2025
Institute of Marine Sciences, Spanish National Research Council (CSIC), 08003 Barcelona, Spain.
Translational silence of spermatozoa has long been considered the norm in animals. However, studies in mammals have shown that the mitochondrial ribosomal machinery is selectively activated during capacitation in the female reproductive tract, while cytosolic ribosomes remain inactive. Here, using quantitative proteomics in a piscine model species, we show that proteins involved in mRNA processing and cytoplasmic translation are predominantly accumulated in immature spermatozoa within the extratesticular excurrent ducts, while those related to flagellar motility are enriched in ejaculated (mature) sperm.
View Article and Find Full Text PDFRNA Biol
December 2025
Institute for Molecular Biosciences and Biomolecular Resonance Center (BMRZ), Goethe University Frankfurt, Frankfurt, Germany.
RNA elements play pivotal roles in regulatory processes, e.g. in transcriptional and translational regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!