A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Epithelial disruptions, but not immune cell invasion, induced secretory dysfunction following innate immune activation in a novel model of acute salivary gland injury. | LitMetric

Background: Salivary gland (SG) injurious agents are all translated into loss of salivation (xerostomia). An association has been established between activation of innate immunity and SG injury and dysfunction. However, it remains unclear how the secretory epithelia respond by halting saliva production.

Methods: C57BL/6 submandibular glands (SMGs) were acutely challenged using a single dose of the innate immune stimulant: polyinosinic-polycytidylic acid (poly (I:C)). Secretory capacity of the infected SMGs was substantiated by assessing the flow rate in response to pilocarpine stimulation. Depletion of the acute inflammatory cells was achieved by pre-treating mice with RB6-8C5 depletion antibody. Flow cytometry, histology and immunohistochemistry were conducted to verify the immune cell depletion. Epithelial expression of saliva-driving molecules: muscarinic 3 receptor (M3R), aquaporin 5 water channel (AQP5), Na-K-CL-Cotransporter 1 (NKCC1) and transmembrane member 16A (TMEM16A), was characterized using RT-qPCR and immunohistochemistry. Tight junction (TJ) protein; zonula occludens (ZO-1) and basement membrane (BM) protein; and laminin were assessed by immunohistochemistry.

Results: Innate immune challenge prompted dysfunction in the exocrine SGs. Dysregulated gene and protein expression of molecules that drive saliva secretion was substantiated. Aberrant expression of TJ and BM proteins followed innate immune activation. Hyposalivation in the current model was independent of myeloperoxidase (MPO)-positive, acute inflammatory cells.

Conclusions: In this study, we developed a novel injury model of the SGs, featuring acute secretory dysfunction and immediate structural disruptions. Our results ruled out the injurious role of aggressively infiltrating inflammatory cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jop.12663DOI Listing

Publication Analysis

Top Keywords

innate immune
16
immune cell
8
secretory dysfunction
8
immune activation
8
salivary gland
8
acute inflammatory
8
inflammatory cells
8
immune
6
innate
5
epithelial disruptions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!