Diverse modes of synaptic signaling, regulation, and plasticity distinguish two classes of glutamatergic neurons.

Elife

Lulu and Anthony Wang Laboratory of Neural Circuits and Behavior, The Rockefeller University, New York, United States.

Published: November 2017

Synaptic vesicle release properties vary between neuronal cell types, but in most cases the molecular basis of this heterogeneity is unknown. Here, we compare in vivo synaptic properties of two neuronal classes in the central nervous system, using VGLUT-pHluorin to monitor synaptic vesicle exocytosis and retrieval in intact animals. We show that the glutamatergic sensory neurons AWC and ASH have distinct synaptic dynamics associated with tonic and phasic synaptic properties, respectively. Exocytosis in ASH and AWC is differentially affected by SNARE-complex regulators that are present in both neurons: phasic ASH release is strongly dependent on UNC-13, whereas tonic AWC release relies upon UNC-18 and on the protein kinase C homolog PKC-1. Strong stimuli that elicit high calcium levels increase exocytosis and retrieval rates in AWC, generating distinct tonic and evoked synaptic modes. These results highlight the differential deployment of shared presynaptic proteins in neuronal cell type-specific functions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5705214PMC
http://dx.doi.org/10.7554/eLife.31234DOI Listing

Publication Analysis

Top Keywords

synaptic vesicle
8
neuronal cell
8
synaptic properties
8
exocytosis retrieval
8
synaptic
7
diverse modes
4
modes synaptic
4
synaptic signaling
4
signaling regulation
4
regulation plasticity
4

Similar Publications

Understanding the role and mode of action of nutrient transporters requires information about their dynamic associations with plant membranes. Historically, apoplastic nutrient export has been associated with proteins localized at the plasma membrane (PM), while the role of endomembrane localization has been less explored. However, recent work on the PHOSPHATE 1 (PHO1) inorganic phosphate (Pi) exporter demonstrated that, although primarily localized at the Golgi and trans-Golgi network (TGN) vesicles, PHO1 does associate with the PM when clathrin-mediated endocytosis (CME) was inhibited, supporting a mechanism for Pi homeostasis involving exocytosis.

View Article and Find Full Text PDF

Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release.

View Article and Find Full Text PDF

Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation.

Rev Physiol Biochem Pharmacol

January 2025

Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK.

Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!