Purpose: To present an alternative experimental model of third degree burn of easy reproducibility.
Methods: Eighteen male Wister rats were randomly divided into three groups, 6 of which were allocated to each group. A soldering iron coupled to an aluminum plate was used to produce burn, at a temperature of 150ºC, with different exposure times per group. Group 5 (G5) animals were burned at 150°C with exposure time of 5 seconds; Group 10 (G10) the animals were burned at 150°C with exposure time of 10 seconds and group 15 (G15) the animals were burned at 150°C with exposure time of 15 seconds.
Results: Histopathological analyzes showed that all three groups had similar morphological characteristics, with total thickness involvement.
Conclusion: The technique is effective to reproduce a third degree burn and suggests the temperature of 150ºC with 5 seconds of exposure in order to minimize the risks to the animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s0102-865020170100000005 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
Purpose: Previous studies have reported divergent sexual responses to aging; however, specific variations in gene expression between aging males and females and their potential association with age-related retinal diseases remain unclear. This study collected data from public databases and developed a comprehensive comparison of retina between aging females and males.
Methods: Single-cell RNA (scRNA) and bulk RNA sequencing data of the aging retina from females and males in public databases were utilized for integrated analysis to investigate sex-biased expression in retina.
J Vis Exp
December 2024
State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University; Department of Endodontics, West China Hospital of Stomatology, Sichuan University;
Severe burn injuries are among the most traumatic and physically debilitating conditions, impacting nearly every organ system and resulting in considerable morbidity and mortality. Given their complexity and the involvement of multiple organs, various animal models have been created to replicate different facets of burn injury. Methods used to produce burned surfaces vary among experimental animal models.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland.
Chronic wounds and injuries remain a substantial healthcare challenge, with significant burdens on patient quality of life and healthcare resources. Mesenchymal stromal cells (MSCs) present an innovative approach to enhance tissue repair and regeneration in the context of wound healing. The intrinsic presence of MSCs in skin tissue, combined with their roles in wound repair, ease of isolation, broad secretory profile, and low immunogenicity, makes them especially promising for treating chronic wounds.
View Article and Find Full Text PDFSkelet Muscle
January 2025
Department of Molecular Physiology and Biophysics, and Department of Neurology, Howard Hughes Medical Institute, Senator Paul D. Wellstone Muscular Dystrophy Specialized Research Center, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA.
Background: Maintaining the connection between skeletal muscle fibers and the surrounding basement membrane is essential for muscle function. Dystroglycan (DG) serves as a basement membrane extracellular matrix (ECM) receptor in many cells, and is also expressed in the outward-facing membrane, or sarcolemma, of skeletal muscle fibers. DG is a transmembrane protein comprised of two subunits: alpha-DG (α-DG), which resides in the peripheral membrane, and beta-DG (β-DG), which spans the membrane to intracellular regions.
View Article and Find Full Text PDFScience
January 2025
Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
Conventionally, the size, shape, and biomechanics of cartilages are determined by their voluminous extracellular matrix. By contrast, we found that multiple murine cartilages consist of lipid-filled cells called lipochondrocytes. Despite resembling adipocytes, lipochondrocytes were molecularly distinct and produced lipids exclusively through de novo lipogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!