Objective: Brain-computer interface (BCI) technology aims to provide individuals with paralysis a means to restore function. Electrocorticography (ECoG) uses disc electrodes placed on either the surface of the dura or the cortex to record field potential activity. ECoG has been proposed as a viable neural recording modality for BCI systems, potentially providing stable, long-term recordings of cortical activity with high spatial and temporal resolution. Previously we have demonstrated that a subject with spinal cord injury (SCI) could control an ECoG-based BCI system with up to three degrees of freedom (Wang et al 2013 PLoS One). Here, we expand upon these findings by including brain-control results from two additional subjects with upper-limb paralysis due to amyotrophic lateral sclerosis and brachial plexus injury, and investigate the potential of motor and somatosensory cortical areas to enable BCI control.

Approach: Individuals were implanted with high-density ECoG electrode grids over sensorimotor cortical areas for less than 30 d. Subjects were trained to control a BCI by employing a somatotopic control strategy where high-gamma activity from attempted arm and hand movements drove the velocity of a cursor.

Main Results: Participants were capable of generating robust cortical modulation that was differentiable across attempted arm and hand movements of their paralyzed limb. Furthermore, all subjects were capable of voluntarily modulating this activity to control movement of a computer cursor with up to three degrees of freedom using the somatotopic control strategy. Additionally, for those subjects with electrode coverage of somatosensory cortex, we found that somatosensory cortex was capable of supporting ECoG-based BCI control.

Significance: These results demonstrate the feasibility of ECoG-based BCI systems for individuals with paralysis as well as highlight some of the key challenges that must be overcome before such systems are translated to the clinical realm. ClinicalTrials.gov Identifier: NCT01393444.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841472PMC
http://dx.doi.org/10.1088/1741-2552/aa9bfbDOI Listing

Publication Analysis

Top Keywords

ecog-based bci
12
cortical modulation
8
upper-limb paralysis
8
individuals paralysis
8
bci systems
8
three degrees
8
degrees freedom
8
cortical areas
8
somatotopic control
8
control strategy
8

Similar Publications

Speech brain-computer interfaces (BCIs) have the potential to augment communication in individuals with impaired speech due to muscle weakness, for example in amyotrophic lateral sclerosis (ALS) and other neurological disorders. However, to achieve long-term, reliable use of a speech BCI, it is essential for speech-related neural signal changes to be stable over long periods of time. Here we study, for the first time, the stability of speech-related electrocorticographic (ECoG) signals recorded from a chronically implanted ECoG BCI over a 12 month period.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) can be used to control assistive devices by patients with neurological disorders like amyotrophic lateral sclerosis (ALS) that limit speech and movement. For assistive control, it is desirable for BCI systems to be accurate and reliable, preferably with minimal setup time. In this study, a participant with severe dysarthria due to ALS operates computer applications with six intuitive speech commands via a chronic electrocorticographic (ECoG) implant over the ventral sensorimotor cortex.

View Article and Find Full Text PDF

Using fMRI to localize target regions for implanted brain-computer interfaces in locked-in syndrome.

Clin Neurophysiol

November 2023

Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CX, Utrecht, The Netherlands. Electronic address:

Objective: Electrocorticography (ECoG)-based brain-computer interface (BCI) systems have the potential to improve quality of life of people with locked-in syndrome (LIS) by restoring their ability to communicate independently. Before implantation of such a system, it is important to localize ECoG electrode target regions. Here, we assessed the predictive value of functional magnetic resonance imaging (fMRI) for the localization of suitable target regions on the sensorimotor cortex for ECoG-based BCI in people with locked-in syndrome.

View Article and Find Full Text PDF

Introduction: In brain-computer interfaces (BCI) research, recording data is time-consuming and expensive, which limits access to big datasets. This may influence the BCI system performance as machine learning methods depend strongly on the training dataset size. Important questions arise: taking into account neuronal signal characteristics (e.

View Article and Find Full Text PDF

Brain-computer interfaces (BCIs) translate brain signals into commands to external effectors, and mainly target severely disabled users. The usability of BCIs may be improved by reducing their major constraints, such as the necessity for special training sessions to initially calibrate and later keep up to date the neural signal decoders. In this study, we show that it is possible to train and update BCI decoders during free use of motor BCIs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!