The application of bone morphogenetic protein 2 (BMP-2) has been extensively investigated to improve diabetes-impaired bone healing; however, the delivery of BMP-2 by gene therapy for bone regeneration has rarely been investigated in diabetic animals. In this study, we aimed to evaluate which cells induce more new bone formation in diabetic animals when cell-based BMP2 gene therapy is applied. For this purpose, we harvested bone marrow stromal cells (BMSCs) twice in the same animal before (non-diabetic BMSCs; nBMSCs) and after diabetes induction (diabetic BMSCs; dBMSCs) using modified bone marrow ablation methods. And then, cells were transduced by adenoviral vectors carrying the BMP2 gene (AdBMP2). In in vitro, AdBMP2-transfected dBMSCs (B2/dBMSCs) produced higher BMP-2 mRNA levels over 48 h, whereas AdBMP2-transfected nBMSCs (B2/nBMSCs) exhibited a transient increase in BMP-2 mRNA followed by a decrease to the baseline level within 48 h. Both B2/dBMSCs and B2/nBMSCs induced secretion of BMP-2 for 3 weeks. However, B2/dBMSC BMP-2 secretion peaked from day 3 to 10, whereas B2/nBMSC BMP-2 secretion peaked from day 1 to 7. The analysis of osteogenic activity revealed that mineralization nodule formation and the expression levels of osteogenic genes were significantly higher in B2/dBMSCs than B2/nBMSCs and were accompanied by upregulation of canonical Wnt/β-catenin and Smad signaling. AdBMP2-transfected autologous cells were implanted into critical-sized calvarial defects in diabetic animals and induced significantly more bone regeneration than non-AdBMP2-transfected cells. In addition, B2/dBMSCs led to significantly more new bone formation than B2/nBMSCs. Thus, BMP2 gene therapy using diabetic cells effectively supported diabetic bone healing and it was related to the enhanced responses to AdBMP2 of dBMSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2017.0101 | DOI Listing |
Background: Age-related macular degeneration (AMD), a condition of multifactorial origin, is a major cause of irreversible vision loss in industrialized countries. The dry late stage of the disease, known as geographic atrophy (GA), is characterized by progressive loss of photoreceptor cells and retinal pigment epithelial cells in the central retina. An estimated 300 000 to 550 000 people in Germany suffer from GA.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom.
Purpose: This study aimed to evaluate early-phase safety of subretinal application of AAVanc80.CAG.USH1Ca1 (OT_USH_101) in wild-type (WT) pigs, examining the effects of a vehicle control, low dose, and high dose.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.
The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.
View Article and Find Full Text PDFStem Cells Dev
January 2025
Department of Clinical Pharmacy and Pharmacy Practices, Faculty of Pharmacy, University Malaya, Kuala Lumpur, Malaysia.
Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!