The main advantages of laser sampling are associated with following features: sample preparations as well as consumables are not needed, low risk of sample contamination, good spatial resolution. In mass spectrometry, high laser irradiance can be used for both ablation and ionization processes. The method is especially profitable in time-of-flight mass spectrometry. A new principle of constructing laser ionization time-of-flight mass spectrometer based on wedge-shaped ion mirrors and the absence of electrostatic ion acceleration before mass analysis is discussed. Among advantages of the analyzer there are ability to provide temporal focusing of ions in a wide energy range (±20%), compactness of the analyzer, and minimization of the requirements for power supplies. The approach is expected to be profitable for standardless elemental analysis of solid samples, which should be possible at laser irradiation power density more than 3 × 10W/cm that ensures complete ionization of all elements in a laser plasma. The analytical signal of each element is formed as the sum of the signals for all charge states and the energy scan of the mass spectra is provided.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1469066717743044DOI Listing

Publication Analysis

Top Keywords

time-of-flight mass
12
constructing laser
8
laser ionization
8
mass spectrometer
8
mass spectrometry
8
laser
6
mass
6
novel approach
4
approach constructing
4
ionization
4

Similar Publications

Genus Acacia comprises around 1500 species. They are widely used to treat inflammation as well as bacterial and fungal infections as they are enriched in phytochemicals, especially phenolics. The aim of this study was to evaluate the antibacterial activity of leaves' methanolic extracts of twelve Acacia species growing in Egypt against Vibrio parahaemolyticus, Salmonella enterica, Listeria monocytogens, Klebsiella pnemoniae, Bacillus aquimaris, Bacillus subtilis, and Escherichia coli.

View Article and Find Full Text PDF

Normalization Based on Shift and Ion Intensity in SALDI-TOFMS Imaging of Samples with Non-Horizontal Surface.

Mass Spectrom (Tokyo)

December 2024

Department of Pharmaceutical Engineering, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu-City, Toyama 939-0398, Japan.

Matrix-assisted laser desorption/ionization (MALDI), surface-assisted laser desorption/ionization (SALDI), and time-of-flight mass spectrometry (TOFMS) imaging are used for visualizing the spatial distribution of analytes. Mass spectrometry (MS) imaging of a sample with a rough surface with a uniform distribution of an analyte does not provide uniform ion intensities in the image. A shift in the value of the analyte ions is also observed.

View Article and Find Full Text PDF

Background: Lower respiratory tract infections (LRTIs) are the most common infections in humans accounting for significant morbidity and mortality. Management of LRTIs is complicated due to increasing antimicrobial resistance. This study investigated the prevalence and trends of antimicrobial resistance for bacteria isolated from respiratory samples of patients with LRTIs.

View Article and Find Full Text PDF

Background: Stutzerimonas is a recently proposed genus comprising strains formerly classified as Pseudomonas stutzeri. The genus includes at least 16 identified species. Stutzerimonas nitrititolerans, previously known as Pseudomonas nitrititolerans, was initially isolated from a bioreactor.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (aaRSs) provide an essential functional link between an mRNA sequence and the protein it encodes. aaRS enzymes catalyze a two-step chemical reaction that acylates specific tRNAs with a cognate α-amino acid. In addition to their role in translation, acylated tRNAs contribute to non-ribosomal natural product biosynthesis and are implicated in multiple human diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!