Ex-situ X-ray computed tomography data for a non-crimp fabric based glass fibre composite under fatigue loading.

Data Brief

Department of Wind Energy, Section of Composites and Materials Mechanics, Technical University of Denmark, Risø Campus, 4000 Roskilde, Denmark.

Published: December 2017

The data published with this article are high resolution X-ray computed tomography (CT) data obtained during an ex-situ fatigue test of a coupon test specimen made from a non-crimp fabric based glass fibre composite similar to those used for wind turbine blades. The fatigue test was interrupted four times for X-ray CT examination during the fatigue life of the considered specimen. All the X-ray CT experiments were performed in the region where unidirectional fibre fractures first became visible, and thereby include the damage progression in 3D in this specific region during fatigue loading of the specimen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5684534PMC
http://dx.doi.org/10.1016/j.dib.2017.10.074DOI Listing

Publication Analysis

Top Keywords

x-ray computed
8
computed tomography
8
tomography data
8
non-crimp fabric
8
fabric based
8
based glass
8
glass fibre
8
fibre composite
8
fatigue loading
8
fatigue test
8

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Associations of fat, bone, and muscle indices with disease severity in patients with obstructive sleep apnea hypopnea syndrome.

Sleep Breath

January 2025

Department of Pulmonary and Critical Care Medicine, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Dongcheng District, Beijing, 100730, PR China.

Purpose: To investigate the relationship between obstructive sleep apnea hypopnea syndrome (OSAHS) severity and fat, bone, and muscle indices.

Methods: This study included 102 patients with OSAHS and retrospectively reviewed their physical examination data. All patients underwent polysomnography, body composition analysis, dual-energy X-ray absorptiometry, computed tomography (CT) and blood test.

View Article and Find Full Text PDF

Objectives: To assess the effect of patient positioning and general anesthesia on the condylar position in orthognathic surgery.

Materials And Methods: This prospective study included patients undergoing orthognathic surgery between 2019 and 2020. Four weeks prior to surgery (T0) cone-beam computed tomography (CBCT) scans and intra-oral scans (IOS) were acquired in an upright position.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

BiTe, a member of the (Bi2)m(Bi2Te3)n homologous series, possesses natural van der Waals-like heterostructure with a Bi2 bilayer sandwiched between the two [Te-Bi-Te-Bi-Te] quintuple layers. BiTe exhibits both the quantum states of weak topological and topological crystalline insulators, making it a dual topological insulator and a suitable candidate for spintronics, quantum computing and thermoelectrics. Herein, we demonstrate that the chemical bonding in BiTe is to be metavalent, which plays a significant role in the pressure dependent change in the topology of the electronic structure Fermi surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!