Acta Pharm Sin B
Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao 266021, China.
Published: November 2017
To foster communication and interactions amongst international scholars and scientists in the field of ion channel research, the 6th International Ion Channel Conference (IICC-2017) was held between June 23-27, 2017 in the eastern coastal city of Qingdao, China. The meeting consisted of 450 attendees and 130 speakers and poster presenters. The program consisted of research progress, new findings and ongoing studies that were focused on (1) Ion channel structure and function; (2) Ion channel physiology and human diseases; (3) Ion channels as targets for drug discovery; (4) Technological advances in ion channel research. An insightful overview was presented on the structure and function of the mechanotransduction channel NOMPC (No mechanoreceptor potential C), a member of the transient receptor potential (TRP) channel family. Recent studies on Transmembrane protein 16 or Anoctamin-1 (TMEM16A, a member of the calcium-activated chloride channel [CaCC] family) were summarized as well. In addition, topics for ion channel regulation, homeostatic feedback and brain disorders were thoroughly discussed. The presentations at the IICC-2017 offer new insights into our understanding of ion channel structures and functions, and ion channels as targets for drug discovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5687311 | PMC |
http://dx.doi.org/10.1016/j.apsb.2017.09.007 | DOI Listing |
Sci Adv
January 2025
Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA.
P2X receptors (P2XRs) are adenosine 5'-triphosphate (ATP)-gated ion channels comprising homomeric and heteromeric trimers of seven subtypes (P2X1-P2X7) that confer different rates of desensitization. The helical recoil model of P2XR desensitization proposes stability of the cytoplasmic cap sets the rate of desensitization, but timing of its formation is unclear for slow-desensitizing P2XRs. We report cryo-electron microscopy structures of full-length wild-type human P2X4 receptor in apo closed, antagonist-bound inhibited, and ATP-bound desensitized states.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA.
Viruses engage in a variety of processes to subvert host defenses and create an environment amenable to replication. Here, using rotavirus as a prototype, we show that calcium conductance out of the endoplasmic reticulum by the virus encoded ion channel, , induces intercellular calcium waves that extend beyond the infected cell and contribute to pathogenesis. Viruses that lack the ability to induce this signaling show diminished viral shedding and attenuated disease in a mouse model of rotavirus diarrhea.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Neurovascular Unit Research Group, Korea Brain Research Institute, Daegu 41062, Republic of Korea.
In ephaptic coupling, physically adjacent neurons influence one another's activity via the electric fields they generate. To date, the molecular mechanisms that mediate and modulate ephaptic coupling's effects remain poorly understood. Here, we show that the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel lateralizes the potentially mutual ephaptic inhibition between gustatory receptor neurons (GRNs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Neurology, the Second Affiliated Hospital, Neuroscience Research Center, Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710000, China.
Neurotransmitters and neuromodulators can be released via either action potential (AP)-evoked transient or AP-independent continuous neurotransmission. The elevated AP-evoked neurotransmission in the primary sensory neurons plays crucial roles in hyperalgesia. However, whether and how the AP-independent continuous neurotransmission contributes to hyperalgesia remains largely unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.