The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood. Members of heat shock chaperone HSP proteins have been linked to acetic acid and heat shock stress responses in yeast. Both acetic acid and heat shock have been identified to trigger different cellular responses including reduction of global protein synthesis and induction of programmed cell death. Yeast and code for two important heat shock proteins that together account for 1-2% of total cellular proteins. Both proteins have been linked to responses to acetic acid and heat shock. In contrast to the overall rate of protein synthesis which is reduced, the expression of and is induced in response to acetic acid stress. In the current study we identified two yeast genes and that are linked to acetic acid and heat shock sensitivity. We investigated the influence of these genes on the expression of HSP proteins. Our observations suggest that and influence translation in a CAP-independent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5691786PMC
http://dx.doi.org/10.7717/peerj.4037DOI Listing

Publication Analysis

Top Keywords

acetic acid
28
heat shock
24
acid heat
16
yeast acetic
8
cellular responses
8
hsp proteins
8
proteins linked
8
linked acetic
8
protein synthesis
8
acetic
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!