Extracellular vesicles (EVs) are small bilayer lipid membrane vesicles that can be released by most cell types and detected in most body fluids. EVs exert key functions for intercellular communication via transferring their bioactive cargos to recipient cells or activating signaling pathways in target cells. Increasing evidence has shown the important regulatory effects of EVs in cardiovascular diseases (CVDs). EVs secreted by cardiomyocytes, endothelial cells, fibroblasts, and stem cells play essential roles in pathophysiological processes such as cardiac hypertrophy, cardiomyocyte survival and apoptosis, cardiac fibrosis, and angiogenesis in relation to CVDs. In this review, we will first outline the current knowledge about the physical characteristics, biological contents, and isolation methods of EVs. We will then focus on the functional roles of cardiovascular EVs and their pathophysiological effects in CVDs, as well as summarize the potential of EVs as therapeutic agents and biomarkers for CVDs. Finally, we will discuss the specific application of EVs as a novel drug delivery system and the utility of EVs in the field of regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5695004PMC
http://dx.doi.org/10.7150/thno.21274DOI Listing

Publication Analysis

Top Keywords

evs
9
extracellular vesicles
8
vesicles cardiovascular
4
cardiovascular theranostics
4
theranostics extracellular
4
vesicles evs
4
evs small
4
small bilayer
4
bilayer lipid
4
lipid membrane
4

Similar Publications

Upon stimulation and activation, mast cells (MCs) release soluble mediators, including histamine, proteases, and cytokines. These mediators are often stored within cytoplasmic granules in MCs and may be released in a granulated form. The secretion of cytokines and chemokines occurs within hours following activation, with the potential to result in chronic inflammation.

View Article and Find Full Text PDF

Mesenchymal stromal cells-extracellular vesicles: protein corona as a camouflage mechanism?

Extracell Vesicles Circ Nucl Acids

November 2024

Laboratorio di Biotecnologie Applicate all'Ortopedia, IRCCS Ospedale Galeazzi - Sant'Ambrogio, Milano 20157, Italy.

Mesenchymal stromal cells (MSCs) showed promising potential for regenerative and therapeutic applications for several pathologies and conditions. Their potential is mainly ascribed to the factors and extracellular vesicles (EVs) they release, which are now envisioned as cell-free therapeutics in cutting-edge clinical studies. A main cornerstone is the preferential uptake by target cells and tissues, in contrast to clearance by phagocytic cells or removal from circulation before reaching the final destination.

View Article and Find Full Text PDF

Extracellular vesicles in liquid biopsies: there is hope for oral squamous cell carcinoma.

Extracell Vesicles Circ Nucl Acids

December 2024

Department of Otorhinolaryngology, Head and Neck Surgery, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong 00000, China.

Current approaches to oral cancer diagnosis primarily involve physical examination, tissue biopsy, and advanced computer-aided imaging techniques. However, despite these advances, patient survival rates have not significantly improved. Hence, there is a critical need to develop minimally invasive tools with high sensitivity and specificity to improve patient survival and quality of life.

View Article and Find Full Text PDF

A comprehensive summary of the ASEV-CzeSEV joint meeting on extracellular vesicles.

Extracell Vesicles Circ Nucl Acids

December 2024

Department of Experimental Biology, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic.

This report summarizes the ASEV-CzeSEV Joint Meeting on Extracellular Vesicles (EVs), held at the Medical University of Vienna in September 2024. The conference focused on introducing and expanding EV research and infrastructure within the Czech Republic and Austria, highlighting areas for collaboration. Key sessions featured research on EV-based diagnostics, tissue regeneration, interspecies communication and therapeutic applications, with an emphasis on shared resources and cross-border partnerships.

View Article and Find Full Text PDF

The intertwined nature of cardiac and renal failure, where dysfunction in one organ predicts a poor outcome in the other, has long driven the interest in uncovering the exact molecular links between the two. Elucidating the mechanisms driving Cardiorenal Syndrome (CRS) will enable the development of targeted therapies that disrupt this detrimental cycle, potentially improving outcomes for patients. A recent study by Chatterjee .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!