Melatonin attenuates thiocyanate-induced vasoconstriction in aortic rings.

Saudi Pharm J

Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Austria.

Published: November 2017

Cigarette smoking not only has a carcinogenic effect but also leads to an increase in arterial blood pressure. Besides its main components, i.e. nicotine, tar, and carbon monoxide, cigarette smoke also contains thiocyanate. Thiocyanate anions (SCN) arise from the detoxification of hydrogen cyanide and its plasma concentrations were found to correlate significantly with cigarette consumption. There is also evidence that atherosclerotic disease progression is much more rapid when serum SCN levels are increased. Melatonin, a non-toxic indolamine with various physiologic functions, is believed to protect against inflammatory processes and oxidative stress. It has been demonstrated that melatonin serves as free radical scavenger and represents a potent antioxidant. Therefore, it is believed that melatonin with its atheroprotective effects may be useful either as a sole therapy or in conjunction with others. The aim of this study was to quantify the thiocyanate-induced vasomotor response in aortic tissue and further to examine the potential of melatonin in affecting the generated vasoreactivity. Aortic rings of adult male normotensive Wistar rats were cut into 4-mm rings. Following the administration of thiocyanate in various concentrations, vasomotor response of aortic vessel segments was measured. To assess the effect of melatonin on vasomotor activity, organ bath concentrations were modulated from 60 to 360 pM, which corresponds to physiologic plasma up to the levels of patients with regular oral intake of 3 mg of melatonin as a supplement. Thirty-six rat aortic rings were studied. When exposed to thiocyanate, vessel segments revealed vasoconstriction in a concentration-dependent manner. In rings which were preincubated with melatonin at a concentration of 360 pM, a 56.5% reduction of effect size could be achieved (4.09 ± 1.22 mN versus 9.41 ± 1.74 mN, P < 0.0001). Additionally, administration of 360 pM melatonin at a norepinephrine concentration of 80 mM resulted in a relaxation of 10.9 ± 2.2%. The vasodilatatory effect of melatonin was significantly reduced to 1.3 ± 0.5% when concentration of norepinephrine was doubled (P < 0.002). This study indicates that vessel segments that were exposed to thiocyanate responded with a dose-dependent vasoconstriction. The effect could be markedly attenuated in segments preincubated in melatonin.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5681314PMC
http://dx.doi.org/10.1016/j.jsps.2017.03.007DOI Listing

Publication Analysis

Top Keywords

aortic rings
12
melatonin
8
vasomotor response
8
response aortic
8
vessel segments
8
aortic
5
rings
5
melatonin attenuates
4
attenuates thiocyanate-induced
4
thiocyanate-induced vasoconstriction
4

Similar Publications

Background/aim: L. () is an aromatic medicinal species with important nutraceutical potential, having rosmarinic acid (RA) as one of its main metabolites. The present study aims to evaluate the effects of an extract obtained from the leaves of this species and of its main metabolite in improving the streptozotocin-induced damage of hearts and aorta of diabetic rats.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

: Following previous findings on high-salt (HS)-intake-related increase of oxidative stress, this study explored whether carnosine (CAR; β-alanyl-L-histidine), a reactive oxygen species (ROS) scavenger, enhanced antioxidative defence and vascular function following HS, potentially via the NRF2 or HIF-1α signalling pathway. : Sprague Dawley rats (64, 8-10 weeks old, both sexes) were divided into four groups (n = 6/group): CTRL (0.4% NaCl), HS (4% NaCl for 7 days), CTRL + CAR (0.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood.

View Article and Find Full Text PDF

Vasculo-Protective Effects of Standardized Black Chokeberry Extracts in Mice Aorta.

Int J Mol Sci

December 2024

Department III Functional Sciences-Pathophysiology, Faculty of Medicine, "Victor Babeș" University of Medicine and Pharmacy of Timișoara, E. Murgu Sq., No. 2, 300041 Timisoara, Romania.

Black chokeberry ( Elliot) represents a rich source of dietary polyphenols and other bioactive phytochemicals with pleiotropic beneficial cardiovascular effects. The present study was aimed at evaluating the ex vivo effects of two black chokeberry extracts (BChEs), obtained from either dry (DryAr) or frozen (FrozAr) berries, on oxidative stress and vascular function in mice aortic rings after incubation with angiotensin 2 (Ang 2), lipopolysaccharide (LPS) and glucose (GLUC) in order to mimic renin-angiotensin system activation, inflammation and hyperglycemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!