Accurate thermal conductivities from optimally short molecular dynamics simulations.

Sci Rep

SISSA - Scuola Internazionale Superiore di Studi Avanzati, via Bonomea 265, 34136, Trieste, Italy.

Published: November 2017

The evaluation of transport coefficients in extended systems, such as thermal conductivity or shear viscosity, is known to require impractically long simulations, thus calling for a paradigm shift that would allow to deploy state-of-the-art quantum simulation methods. We introduce a new method to compute these coefficients from optimally short molecular dynamics simulations, based on the Green-Kubo theory of linear response and the cepstral analysis of time series. Information from the full sample power spectrum of the relevant current for a single and relatively short trajectory is leveraged to evaluate and optimally reduce the noise affecting its zero-frequency value, whose expectation is proportional to the corresponding conductivity. Our method is unbiased and consistent, in that both the resulting bias and statistical error can be made arbitrarily small in the long-time limit. A simple data-analysis protocol is proposed and validated with the calculation of thermal conductivities in the paradigmatic cases of elemental and molecular fluids (liquid Ar and HO) and of crystalline and glassy solids (MgO and a-SiO). We find that simulation times of one to a few hundred picoseconds are sufficient in these systems to achieve an accuracy of the order of 10% on the estimated thermal conductivities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5696481PMC
http://dx.doi.org/10.1038/s41598-017-15843-2DOI Listing

Publication Analysis

Top Keywords

thermal conductivities
12
optimally short
8
short molecular
8
molecular dynamics
8
dynamics simulations
8
accurate thermal
4
conductivities optimally
4
simulations evaluation
4
evaluation transport
4
transport coefficients
4

Similar Publications

To clarify the effect of heating rate on the thermal decomposition process of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB), this study employs molecular dynamic simulations to investigate the thermal decomposition of TATB at heating rates of 20, 40, 60, and 80 K/ps. The initial temperature is uniformly set to 300 K, while the final temperature is set to 3000 K. Results indicate that within the temperature range of 300-3000 K, the thermal decomposition rate of TATB decreases with increasing heating rate, whereas the initial decomposition temperature of TATB increases, consistent with the experimental pattern.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

Coupling-Induced Dynamic Off-Centering of Cu Drives High Thermoelectric Performance in TlCuS.

J Am Chem Soc

January 2025

New Chemistry Unit, International Centre for Materials Science and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, Jakkur P.O. 560064, India.

Seeking new and efficient thermoelectric materials requires a detailed comprehension of chemical bonding and structure in solids at microscopic levels, which dictates their intriguing physical and chemical properties. Herein, we investigate the influence of local structural distortion on the thermoelectric properties of TlCuS, a layered metal sulfide featuring edge-shared Cu-S tetrahedra within CuS layers. While powder X-ray diffraction suggests average crystallographic symmetry with no distortion in CuS tetrahedra, the synchrotron X-ray pair distribution function experiment exposes concealed local symmetry breaking, with dynamic off-centering distortions of the CuS tetrahedra.

View Article and Find Full Text PDF

Aminobenzoic Acid Covalently Modified Polyoxotungstates Based on {XW} Clusters with Proton Conductivity Property.

Inorg Chem

January 2025

Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China.

Three cases of aminobenzoic acid hybrid polyoxotungstates, Na(HO)[(HPWO) (OCCHNH)]·7HO (), K(HO)[(AsWO)(OCCHNH)]·4HO (), and [(HN(CH)]Na(HO)[(SbWO) (OCCHNH)]·7HO (), were successfully synthesized. This is the first report of the successful assembly of the hexanuclear {XW} (X = HP, As, or Sb) clusters and organic carboxylic acid (para aminobenzoic acid) ligands. All three hybrids feature a common {XW} unit composed of a six-membered {WO} octahedral ring capped by one {XO} trigonal pyramid.

View Article and Find Full Text PDF

A green methodology for the synthesis of carbon quantum dots (CQDs) from coffee husk without the use of any toxic solvents is proposed in this work. Sonochemical exfoliation of biochar, obtained from the thermal carbonization of coffee husk (from a certified coffee seeds) at low temperature in an air-restricted atmosphere, is described as an alternative procedure for the sustainable production of CQDs. The synthesized CQDs exhibited blue fluorescence with a strong maximum emission band at 410 nm when excited at a maximum absorption wavelength of 330 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!