Cohesin tethers DNA to mediate sister chromatid cohesion, chromosome condensation, and DNA repair. How the cell regulates cohesin to perform these distinct functions remains to be elucidated. One cohesin regulator, Wpl1p, was characterized in as a promoter of efficient cohesion and an inhibitor of condensation. Wpl1p is also required for resistance to DNA-damaging agents. Here, we provide evidence that Wpl1p promotes the timely repair of DNA damage induced during S-phase. Previous studies have indicated that Wpl1p destabilizes cohesin's binding to DNA by modulating the interface between the cohesin subunits Mcd1p and Smc3p Our results suggest that Wpl1p likely modulates this interface to regulate all of cohesin's biological functions. Furthermore, we show that Wpl1p regulates cohesion and condensation through the formation of a functional complex with another cohesin-associated factor, Pds5p In contrast, Wpl1p regulates DNA repair independently of its interaction with Pds5p Together, these results suggest that Wpl1p regulates distinct biological functions of cohesin by Pds5p-dependent and -independent modulation of the Smc3p/Mcd1p interface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5753852 | PMC |
http://dx.doi.org/10.1534/genetics.117.300537 | DOI Listing |
Physiol Plant
January 2025
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh, India.
Under changing climatic conditions, plant exposure to high-intensity UV-B can be a potential threat to plant health and all plant-derived human requirements, including food. It's crucial to understand how plants respond to high UV-B radiation so that proper measures can be taken to enhance tolerance towards high UV-B stress. We found that BBX22, a B-box protein-coding gene, is strongly induced within one hour of exposure to high-intensity UV-B.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy.
In prokaryotes, DNA methylation plays roles in DNA repair, gene expression, cell cycle progression, and immune recognition of foreign DNA. Genome-wide methylation patterns can vary between strains, influencing phenotype, and gene transfer. However, broader evolutionary studies on bacterial epigenomic variation remain limited.
View Article and Find Full Text PDFCell Death Differ
January 2025
Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
The assembly of Tcrb and Tcra genes require double negative (DN) thymocytes to undergo multiple rounds of programmed DNA double-strand breaks (DSBs), followed by their efficient repair. However, mechanisms governing cell cycle checkpoints and specific survival pathways during the repair process remain unclear. Here, we report high-resolution scRNA-seq analyses of individually sorted mouse DN3 and DN4 thymocytes, which reveals a G2M cell cycle checkpoint, in addition to the known G1 checkpoint, during Tcrb and Tcra recombination.
View Article and Find Full Text PDFNature
January 2025
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
Germline BRCA2 loss-of function variants, which can be identified through clinical genetic testing, predispose to several cancers. However, variants of uncertain significance limit the clinical utility of test results. Thus, there is a need for functional characterization and clinical classification of all BRCA2 variants to facilitate the clinical management of individuals with these variants.
View Article and Find Full Text PDFNature
January 2025
Stanford Cancer Institute, School of Medicine, Stanford University, Stanford, CA, USA.
Breast cancer is a highly heterogeneous disease whose prognosis and treatment as defined by the expression of three receptors-oestrogen receptor (ER), progesterone receptor and human epidermal growth factor receptor 2 (HER2; encoded by ERBB2)-is insufficient to capture the full spectrum of clinical outcomes and therapeutic vulnerabilities. Previously, we demonstrated that transcriptional and genomic profiles define eleven integrative subtypes with distinct clinical outcomes, including four ER subtypes with increased risk of relapse decades after diagnosis. Here, to determine whether these subtypes reflect distinct evolutionary histories, interactions with the immune system and pathway dependencies, we established a meta-cohort of 1,828 breast tumours spanning pre-invasive, primary invasive and metastatic disease with whole-genome and transcriptome sequencing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!