Insecticides are widely used to control pests in agriculture and insect vectors that transmit human diseases. However, these chemicals can have a negative effect on nontarget, beneficial organisms including bees. Discovery and deployment of selective insecticides is a major mission of modern toxicology and pest management. Pyrethroids exert their toxic action by acting on insect voltage-gated sodium channels. Honeybees and bumblebees are highly sensitive to most pyrethroids, but are resistant to a particular pyrethroid, tau-fluvalinate (τ-FVL). Because of its unique selectivity, τ-FVL is widely used to control not only agricultural pests but also varroa mites, the principal ectoparasite of honeybees. However, the mechanism of bee resistance to τ-FVL largely remains elusive. In this study, we functionally characterized the sodium channel BiNa1-1 from the common eastern bumblebee () in oocytes and found that the BiNa1-1 channel is highly sensitive to six commonly used pyrethroids, but resistant to τ-FVL. Phylogenetic and mutational analyses revealed that three residues, which are conserved in sodium channels from 12 bee species, underlie resistance to τ-FVL or sensitivity to the other pyrethroids. Further computer modeling and mutagenesis uncovered four additional residues in the pyrethroid receptor sites that contribute to the unique selectivity of the bumblebee sodium channel to τ-FVL versus other pyrethroids. Our data contribute to understanding a long-standing enigma of selective pyrethroid toxicity in bees and may be used to guide future modification of pyrethroids to achieve highly selective control of pests with minimal effects on nontarget organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5724271PMC
http://dx.doi.org/10.1073/pnas.1711699114DOI Listing

Publication Analysis

Top Keywords

sodium channel
12
control pests
8
sodium channels
8
highly sensitive
8
pyrethroids resistant
8
unique selectivity
8
resistance τ-fvl
8
pyrethroids
6
τ-fvl
6
sodium
5

Similar Publications

A multifunctional quasi-solid-state polymer electrolyte with highly selective ion highways for practical zinc ion batteries.

Nat Commun

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

The uncontrolled dendrite growth and detrimental parasitic reactions of Zn anodes currently impede the large-scale implementation of aqueous zinc ion batteries. Here, we design a versatile quasi-solid-state polymer electrolyte with highly selective ion transport channels via molecular crosslinking of sodium polyacrylate, lithium magnesium silicate and cellulose nanofiber. The abundant negatively charged ionic channels modulate Zn desolvation process and facilitate ion transport.

View Article and Find Full Text PDF

Protein/protein interactions (PPI) play crucial roles in neuronal functions. Yet, their potential as drug targets for brain disorders remains underexplored. The fibroblast growth factor 14 (FGF14)/voltage-gated Na channel 1.

View Article and Find Full Text PDF

NaFe(PO)(PO) (NFPP) is currently receiving a lot of attention, as it combines the advantages of NaFePO and NaFePO in terms of cost, energy density, and cycle stability. However, the issues of intrinsic poor electronic conductivity and difficult high-purity preparation may impede its practical application. Herein, the pivotal role of Cu doping in strengthening the polyanion structure and improving its electrochemical properties is comprehensively investigated.

View Article and Find Full Text PDF

A Multidisciplinary Approach to Navigating Variants of Uncertain Significance in Sudden Infant Deaths: A Case Report of 2 Siblings With an SCN10A VUS.

Am J Forensic Med Pathol

January 2025

Office of the Medical Examiner-Davidson and Williamson Counties, Nashville, TN /Forensic Medical Management Services, LLC.

The sudden death of a previously healthy infant is a devastating event for a family-the death of 2 even more unimaginable. Prior to the debunking of Meadow's law, a legal concept attributing multiple unexplained infant deaths to Munchausen by proxy, these events could lead to the wrongful prosecution of those who had lost their children to "sudden unexpected infant death (SUID)." Today, these cases, wherein multiple infants within one family pass inexplicably, raise suspicion for a possible genetic cause and point toward a need for postmortem genetic testing.

View Article and Find Full Text PDF

Ion channels, as functional molecules that regulate the flow of ions across cell membranes, have emerged as a promising target in cancer therapy due to their pivotal roles in cell proliferation, metastasis, apoptosis, drug resistance, and so on. Recently, increasing evidence suggests that dysregulation of ion channels is a common characteristic of cancer cells, contributing to their survival and the resistance to conventional therapies. For example, the aberrant expression of sodium (Na) and potassium ion (K) channels is significantly correlated with the sensitivity of chemotherapy drugs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!