Osteoclasts resorb bone by attaching on the bone matrix and forming a sealing zone. In Src-deficient mice, osteoclasts cannot form the actin ring, a characteristic actin structure that seals the resorbed area, and resorb hardly any bone as a result. However, the molecular mechanism underlying the role of Src in the regulation and organization of the actin ring is still unclear. We identified an actin-regulatory protein, protein phosphatase 1 regulatory subunit 18 (PPP1r18), as an Src-binding protein in an Src-, Yes-, and Fyn-deficient fibroblast (SYF) cell line overexpressing a constitutively active form of Src. PPP1r18 was localized in the nucleus and actin ring. PPP1r18 overexpression in osteoclasts inhibited terminal differentiation, actin ring formation, and bone-resorbing activity. A mutation of the protein phosphatase 1 (PP1)-binding domain of PPP1r18 rescued these phenotypes. In contrast, PPP1r18 knockdown promoted terminal differentiation and actin ring formation. In summary, we showed that PPP1r18 likely plays a role in podosome organization and bone resorption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5789032 | PMC |
http://dx.doi.org/10.1128/MCB.00425-17 | DOI Listing |
Bone Rep
March 2025
Beijing Institute of Dental Research, Beijing Stomatological Hospital, Capital Medical University, Beijing 100050, China.
Background: Gnathodiaphyseal dysplasia (GDD) is a rare autosomal dominant genetic disease characterized by osteosclerosis of the tubular bones and cemento-osseous lesions of the mandibles. () is the pathogenic gene, however, the specific molecular mechanism of GDD remains unclear. Herein, a knockin ( ) mouse model expressing the human mutation p.
View Article and Find Full Text PDFNat Commun
January 2025
Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
Many micro-particles including pathogens strongly adhere to hosts. It remains elusive how macrophages detach these surface-bound particles during phagocytosis. We show that, rather than binding directly to these particles, macrophages form unique β integrin-mediated adhesion structures at the cell-substrate interfaces, specifically encircling the surface-bound particles.
View Article and Find Full Text PDFJ Oral Biosci
January 2025
Department of Tissue Regeneration, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan. Electronic address:
Objectives: Systemic administration of conditioned medium (CM) from stem cells derived from human exfoliated deciduous teeth (SHED-CM) in mouse models of rheumatoid arthritis, osteoporosis, and osteoarthritis suppresses excessive osteoclast activity and restores bone integrity. However, the mechanism through which SHED-CM regulates osteoclastogenesis remains largely unknown. In the present study, we examined the anti-osteoclastogenic mechanism of SHED-CM in vitro.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
January 2025
Department of Life Science, Faculty of Science, Gakushuin University, Mejiro, Tokyo, Japan.
Cytokinesis in animal and fungal cells requires the contraction of actomyosin-based contractile rings formed in the division cortex of the cell during late mitosis. However, the detailed mechanism remains incompletely understood. Here, we aim to develop a novel cell-free system by encapsulating cell extracts obtained from fission yeast cells within lipid vesicles, which subsequently leads to the formation of a contractile ring-like structure inside the vesicles.
View Article and Find Full Text PDFCell Death Differ
January 2025
The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!