The study of metabolites in biological samples is of high interest for a wide range of biological and pharmaceutical applications. Reversed phase liquid chromatography is a common technique used for the separation of metabolites, but it provides little retention for polar metabolites. An alternative to C18 bonded phases, porous graphitic carbon has the ability to provide significant retention for both non-polar and polar analytes. The goal of this work is to study the retention and effective diffusion properties of porous graphitic carbon, to see if it is suitable for the wide injection bands and long run times associated with long, packed capillary-scale separations. The retention of a set of standard metabolites was studied for both stationary phases over a wide range of mobile phase conditions. This data showed that porous graphitic carbon benefits from significantly increased retention (often >100 fold) under initial gradient conditions for these metabolites, suggesting much improved ability to focus a wide injection band at the column inlet. The effective diffusion properties of these columns were studied using peak-parking experiments with the standard metabolites under a wide range of retention conditions. Under the high retention conditions, which can be associated with retention after injection loading for gradient separations, D/D∼0.1 for both the C18-bonded and porous graphitic carbon columns. As C18 bonded particles are widely, and successfully utilized for long gradient separations without issue of increasing peak width from longitudinal diffusion, this suggests that porous graphitic carbon should be amenable for long runtime gradient separations as well.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5711574 | PMC |
http://dx.doi.org/10.1016/j.chroma.2017.11.023 | DOI Listing |
Nanomaterials (Basel)
January 2025
State Key Laboratory of Nonferrous Metals and Processes, GRIMN Group Co., Ltd., Beijing 100088, China.
Paraffin wax (PW) has significant potential for spacecraft thermal management, but low thermal conductivity and leakage issues make it no longer sufficient for the requirements of evolving spacecraft thermal control systems. Although free-state expanded graphite (EG) as a thermal conductivity enhancer can ameliorate the above problems, it remains challenging to achieve higher thermal conductivity (K) (>8 W/(m·K)) at filler contents below 10 wt.% and to mitigate the leakage problem.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China.
Carbon is predominantly used in zinc-ion hybrid capacitors (ZIHCs) as an electrode material. Nitrogen doping and strategic design can enhance its electrochemical properties. Melamine formaldehyde resin, serving as a hard carbon precursor, synthesizes nitrogen-doped porous carbon after annealing.
View Article and Find Full Text PDFACS Nano
January 2025
College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China.
Electrocatalytic CO-to-CO conversion with a high CO Faradaic efficiency (FE) at low overpotentials and industrial-level current densities is highly desirable but a huge challenge over non-noble metal catalysts. Herein, graphitic N-rich porous carbons supporting atomically dispersed nickel (NiN-O sites with an axial oxygen) were synthesized (denoted as O-Ni-N-GC) and applied as the cathode catalyst in a CORR flow cell. O-Ni-N-GC showed excellent selectivity with a FE over 92% at low overpotentials ranging from 17 to 60 mV, and over 99% at 80 mV.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, 500 05 Hradec Králové, Czechia.
The retention behavior in supercritical fluid chromatography (SFC) remains a complex and poorly understood phenomenon despite the development of various models to explain retention mechanisms. This study aims to deepen the understanding of retention by investigating three distinct stationary phases: high-strength silica octadecyl (HSS C18 SB), charged surface hybrid pentafluorophenyl (CSH PFP), and porous graphitic carbon (PGC) as a nonsilica-based phase. Three mobile phase compositions, i.
View Article and Find Full Text PDFSoft Matter
January 2025
Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA.
This study introduces a method for synthesizing electrically conductive hydrogels by incorporating a self-assembled, percolating graphene network. Our approach differs from previous approaches in two crucial aspects: using pristine graphene rather than graphene oxide and self-assembling the percolation network rather than creating random networks by blending. We use pristine graphene at an oil-water interface to stabilize a water-in-oil emulsion, successfully creating hydrogel foams with conductivities up to 15 mS m and tunable porosity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!