The inhibition of undesirable nitrite oxidizing bacteria (NOB) and desirable ammonium oxidizing bacteria (AOB) by free ammonia (FA) and free nitrous acid (FNA) in partial nitritation (PN) is crucially affected by the biomass growth mode (suspended sludge, biofilm, encapsulation). But, the limitations of these modes towards less concentrated reject waters (≤600 mg-N L) are unclear. Therefore, this work compares the start-up and stability of three PN sequencing batch reactors (SBRs) with biomass grown in one of the three modes: suspended sludge, biofilm and biomass encapsulated in polyvinyl alcohol (PVA) pellets. The SBRs were operated at 15°C with influent total ammonium nitrogen (TAN) concentrations of 75-600 mg-TAN L. PN start-up was twice as fast in the biofilm and encapsulated biomass SBRs than in the suspended sludge SBR. After start-up, PN in the biofilm and suspended sludge SBRs was stable at 150-600 mg-TAN L. But, at 75 mg-TAN L, full nitrification gradually developed. In the encapsulated biomass SBR, full nitrification occurred even at 600 mg-TAN L, showing that NOB in this set-up can adapt even to 4.3 mg-FA L and 0.27 mg-FNA L. Thus, PN in the biofilm was best for the treatment of an influent containing 150-600 mg-TAN L.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2017.1403491DOI Listing

Publication Analysis

Top Keywords

suspended sludge
16
biomass growth
8
growth mode
8
partial nitritation
8
oxidizing bacteria
8
sludge biofilm
8
encapsulated biomass
8
full nitrification
8
biomass
6
biofilm
5

Similar Publications

Microbial eukaryotes are vital to global microbial diversity, but there is limited information about their composition and sources in contaminated surface waters. This study examined the pathogens and potential sources of microbial eukaryotic communities in polluted sink environments using the 18S rDNA amplicon sequencing combined with the fast expectation-maximization for microbial source tracking (FEAST) program. Six sampling sites were selected along the Pasig-Marikina-San Juan (PAMARISAN) River System, representing different locations within the waterway and classified as sinks (n = 12), whereas animal fecal samples collected from various farms were classified as sources (n = 29).

View Article and Find Full Text PDF

To address the challenge of antibiotic-containing wastewater, a novel micromagnetic carrier-modified integrated fixed-film activated sludge system (MC-IFAS) was developed for treating tetracycline (TC)-containing swine wastewater in this study. The magnetic effects of the MC significantly enhanced TC removal by improving TC biosorption and biodegradation in both the suspended activated sludge and the carrier-attached biofilm in the MC-IFAS. The increased electrostatic attraction and number of binding sites in both the activated sludge and the biofilm enhanced their TC biosorption capacities, particularly in the activated sludge.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) are valuable metabolic intermediates that are produced during dark fermentation of sludge, which, when capitalized on, can be used as chemical precursors for biotechnological applications. However, high concentrations of solids with SCFAs in hydrolyzed sludge can be highly detrimental to downstream recovery processes. This pilot-scale study addresses this limitation and explores the recovery of SCFAs from primary sludge into a particle-free permeate through a combination of chamber filter-press (material: polyester; mesh size: 100 µm) and cross-flow microfiltration (material: α-AlO; pore size: 0.

View Article and Find Full Text PDF

The performance of Upflow Anaerobic Sludge Blanket (UASB) bioreactors treating sulfate (SO) -rich effluents depends on multiple factors, including microbial interactions and operational conditions. The high complexity of these systems necessitates the use of mathematical modelling tools to better understand the process and predict the long-term impacts of various operational variables. In this work, a mathematical model describing the long-term operation of a sulfate-fed 2.

View Article and Find Full Text PDF

Assessment of Garbage Enzyme as a Bioremediation Method for the Wastewater Treatment.

Biotechnol Appl Biochem

January 2025

Department of Civil Engineering, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh, India.

This study evaluates the efficacy of garbage enzyme (GE) in bioremediation to reduce pollutants in sewage drains that discharge into the natural streams and rivers. Garbage enzyme is prepared with help of brown sugar, fruit, vegetable wastes, and water in the proportion 1:3:10 (by weight), which is then applied to the samples collected from various drainage sites in Jaunpur district, Uttar Pradesh, India. Different concentrations of GE (ranging from 0% to 20%) are mixed with sewage to assess pollution reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!