The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water.

Biomed Pharmacother

Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea. Electronic address:

Published: January 2018

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by environmental and chemical allergens. Despite the complexity of its pathogenesis, many investigations have shown that substances having anti-inflammatory activities alleviated the pathology of AD. Here, we evaluated the effects of mineral-balanced deep sea water (DSW) on AD-like skin damage in both in vitro and in vivo. The results showed that mineral-balanced DSW regressed inflammatory chemokines, such as macrophage-derived chemokine (MDC), thymus- and activation-regulated chemokine (TARC) and regulated on activation, normal T-cell expressed and secreted (RANTES), and cytokines, interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) mRNA expression in HaCaT immortal human keratinocyte treated with tumor necrosis factor (TNF)-α/ interferon (IFN)-γ mixture. Furthermore, increased cyclooxygenase (COX)-2 protein expressions were also reversed, filaggrin gene expression was enhanced and decreased involucrin transcriptions was recovered by mineral-balanced DSW in TNF-α/IFN-γ mixture-treated HaCaT human keratinocyte. Moreover, we revealed that the inhibitory effects of mineral-balanced DSW were mediated with the suppression of signal transducer and activator of transcription (STAT) 1 phosphorylation. In animal experiments, we showed that hardness 2000 of mineral-balanced DSW decreased the serum levels of IgE, IL-4, and histamine, and alleviated the severity score and numbers of scratching in dinitrochlorobezene (DNCB)-treated Nc/Nga mice. Furthermore, increased epidermal thickness and mast cell infiltration by DNCB treatment were reversed by the application of hardness 2000 mineral-balanced DSW. Taken together, the present investigation indicates that mineral-balanced DSW is a potent substance with anti-atopic dermatitis activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biopha.2017.11.056DOI Listing

Publication Analysis

Top Keywords

mineral-balanced dsw
24
human keratinocyte
12
nc/nga mice
8
mineral-balanced
8
mineral-balanced deep
8
deep sea
8
sea water
8
effects mineral-balanced
8
hardness 2000
8
2000 mineral-balanced
8

Similar Publications

This study investigated the effect of mineral-balanced deep-sea water (DSW) on kidney health using an animal model of kidney injury due to a high-sodium diet. High magnesium/low sodium (HMLS) and high magnesium/high calcium (HMHC) DSW samples with different mineral contents were prepared. Sprague-Dawley rats were fed an 8% sodium chloride (NaCl) diet for four weeks to induce kidney injury, and each group was supplied with purified water or mineral water.

View Article and Find Full Text PDF

The prevention of TNF-α/IFN-γ mixture-induced inflammation in human keratinocyte and atopic dermatitis-like skin lesions in Nc/Nga mice by mineral-balanced deep sea water.

Biomed Pharmacother

January 2018

Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, 38066, Republic of Korea. Electronic address:

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by environmental and chemical allergens. Despite the complexity of its pathogenesis, many investigations have shown that substances having anti-inflammatory activities alleviated the pathology of AD. Here, we evaluated the effects of mineral-balanced deep sea water (DSW) on AD-like skin damage in both in vitro and in vivo.

View Article and Find Full Text PDF

Regulatory mechanism of mineral-balanced deep sea water on hypocholesterolemic effects in HepG2 hepatic cells.

Biomed Pharmacother

February 2017

Department of Pharmacology and Intractable Disease Research Center, School of Medicine, Dongguk University, Gyeongju, Republic of Korea. Electronic address:

Several previous studies have shown the benefits of deep sea water (DSW) in lipid metabolism. However, the effects of DSW on cellular cholesterol accumulation and synthesis induced by high glucose or free fatty acid plus high glucose [4.5g/L] (FFA/glucose) have not been fully elucidated to date.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!