A commonly heard concern in the Ross procedure, where a diseased aortic valve is replaced by the patient's own pulmonary valve, is the possibility of pulmonary autograft dilatation. We performed a biomechanical investigation of the use of a personalized external aortic root support or exostent as a possibility for supporting the autograft. In ten sheep a short length of pulmonary artery was interposed in the descending aorta, serving as a simplified version of the Ross procedure. In seven of these cases, the autograft was supported by an external mesh or so-called exostent. Three sheep served as control, of which one was excluded from the mechanical testing. The sheep were sacrificed six months after the procedure. Samples of the relevant tissues were obtained for subsequent mechanical testing: normal aorta, normal pulmonary artery, aorta with exostent, pulmonary artery with exostent, and pulmonary artery in aortic position for six months. After mechanical testing, the material parameters of the Gasser-Ogden-Holzapfel model were determined for the different tissue types. Stress-strain curves of the different tissue types show significantly different mechanical behavior. At baseline, stress-strain curves of the pulmonary artery are lower than aortic stress-strain curves, but at the strain levels at which the collagen fibers are recruited, the pulmonary artery behaves stiffer than the aorta. After being in aortic position for six months, the pulmonary artery tends towards aorta-like behavior, indicating that growth and remodeling processes have taken place. When adding an exostent around the pulmonary autograft, the mechanical behavior of the composite artery (exostent + artery) differs from the artery alone, the non-linearity being more evident in the former.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2017.11.018 | DOI Listing |
BMC Pulm Med
January 2025
Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 301-721, Republic of Korea.
Background: Behçet's disease (BD) is a multisystem inflammatory disorder that can affect various organs, including the lungs. Pulmonary manifestations are rare and typically present as pulmonary artery aneurysms.
Case Presentation: We report the case of a 56-year-old East Asian male with a 27-year history of BD, who had no respiratory symptoms, such as hemoptysis, cough, or fever.
Redox Biol
January 2025
Department of Pediatrics, Peking University First Hospital, Beijing, 100034, PR China. Electronic address:
Background: The binding of endothelin-1 (ET-1) to endothelin type A receptor (ETAR) performs a critical action in pulmonary arterial smooth muscle cell (PASMC) proliferation leading to pulmonary vascular structural remodeling. More evidence showed that cystathionine γ-lyase (CSE)-catalyzed endogenous hydrogen sulfide (HS) was involved in the pathogenesis of cardiovascular diseases. In this study, we aimed to explore the effect of endogenous HS/CSE pathway on the ET-1/ETAR binding and its underlying mechanisms in the cellular and animal models of PASMC proliferation.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
The pathogenesis of chronic thromboembolic pulmonary hypertension may be multifactorial and requires further studies. We explored alterations in pulmonary artery endothelial cells under the hypoxic and elevated interleukin-17 conditions that are commonly present in patients with chronic thromboembolic pulmonary hypertension. We measured the serum interleukin-17 levels in 10 chronic thromboembolic pulmonary hypertension patients and 10 healthy control persons.
View Article and Find Full Text PDFClin Transplant
January 2025
Division of Cardiac Surgery, Department of Surgery, Faculty of Medicine, University of Alberta, Edmonton, Canada.
Introduction: Preclinically, 24-hour continuous Ex-Situ Lung Perfusion (ESLP) is the longest duration achieved in large animal models and rejected human lungs. Here, we present our 36-hour Negative Pressure Ventilation (NPV)-ESLP protocol applied to porcine and rejected human lungs.
Methods: Five sets of donor domestic pig lungs (45-55 kg) underwent 36-hour NPV-ESLP.
Front Cardiovasc Med
January 2025
Department of Cardiovascular Medicine, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
Background: Atrial fibrillation (AF) is a prevalent cardiac arrhythmia, with ventricular rate control being a critical therapeutic target. However, the optimal range for ventricular rate control remains unclear. Additionally, the relationship between different levels of ventricular rate control and cardiac remodeling in patients with atrial fibrillation remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!