Mechanical harvest of massive harmful algal blooms is an effective measure for bloom mitigation. Yet subsequent processing of the resulting water from algae water separation after the harvesting becomes a new problem since individual algal cells or small algal aggregates are still present in the water. Here, we proposed a novel approach for effectively flocculating the cyanobacteria Microcystis aeruginosa with a removal efficiency of 97% in 6 h using hydrolyzed urine. Nitrogen and phosphorus were simultaneously reclaimed through struvite formation. The addition of Mg promoted the flocculation efficiency and nutrient removal as well as the yield of struvite. Ca could enhance the flocculation efficiency by forming calcium phosphate. During the flocculation process, no significant damage in algal cells was observed. This study provides a novel and sustainable potential for subsequent processing of the resulting water after algae water separation with simultaneous nutrient precipitation and reducing nutrient loads to wastewater treatment plants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2017.11.049DOI Listing

Publication Analysis

Top Keywords

microcystis aeruginosa
8
simultaneous nutrient
8
nutrient precipitation
8
subsequent processing
8
processing water
8
water algae
8
algae water
8
water separation
8
algal cells
8
flocculation efficiency
8

Similar Publications

Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.

View Article and Find Full Text PDF

Increasing temperature counteracts the negative effects of ultraviolet radiation on Microcystis aeruginosa under future climate scenarios in relation to physiological processes.

Comp Biochem Physiol C Toxicol Pharmacol

January 2025

Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, CABA, Argentina; Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, General San Martín, Argentina; Red de Investigación de estresores Marinos-Costeros en América Latina y el Caribe, Mar del Plata, Argentina. Electronic address:

Heat waves, are a major concern related to climate change, and are projected to increase in frequency and severity. This temperature rise causes thermal stratification, exposing surface-dwelling organisms to higher levels of ultraviolet radiation (UVR). This study aims to understand how the toxic bloom-forming cyanobacterium Microcystis aeruginosa adapts to changing climatic conditions.

View Article and Find Full Text PDF

Towards sustainable spirulina farming: Enhancing productivity and biosafety with a salinity-biostimulants strategy.

Bioresour Technol

January 2025

Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:

Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).

View Article and Find Full Text PDF

The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.

View Article and Find Full Text PDF

Entecavir (ETV) is an antiviral used to treat chronic infection caused by the hepatitis B virus, which affects approximately 250 million people worldwide. In order to mitigate the impacts of ETV on the environment, including potential harm to human health, this study evaluated the use of the Fenton-like reaction, which uses iron complexed with ethylenediaminetetraacetic acid (EDTA) at neutral pH, and the microbiological action of in removing ETV from the aqueous medium. Aqueous concentrations of 100 mg/L were subjected to Fenton-like degradation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!