Mechanical harvest of massive harmful algal blooms is an effective measure for bloom mitigation. Yet subsequent processing of the resulting water from algae water separation after the harvesting becomes a new problem since individual algal cells or small algal aggregates are still present in the water. Here, we proposed a novel approach for effectively flocculating the cyanobacteria Microcystis aeruginosa with a removal efficiency of 97% in 6 h using hydrolyzed urine. Nitrogen and phosphorus were simultaneously reclaimed through struvite formation. The addition of Mg promoted the flocculation efficiency and nutrient removal as well as the yield of struvite. Ca could enhance the flocculation efficiency by forming calcium phosphate. During the flocculation process, no significant damage in algal cells was observed. This study provides a novel and sustainable potential for subsequent processing of the resulting water after algae water separation with simultaneous nutrient precipitation and reducing nutrient loads to wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2017.11.049 | DOI Listing |
Chemosphere
January 2025
St. Petersburg Federal Research Center of the Russian Academy of Sciences (SPC RAS), Scientific Research Centre for Ecological Safety of the Russian Academy of Sciences, 18, Korpusnaya st., St. Petersburg, 197110, Russia.
Harmful cyanobacterial blooms (HCB) have become a common issue in freshwater worldwide. Biological methods for controlling HCB are relatively cost effective and environmentally friendly. The strain of ascomycete GF6 was isolated from a water sample collected from the estuarine zone of the eastern part of the Gulf of Finland.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
January 2025
Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, CABA, Argentina; Departamento de Radiobiología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, General San Martín, Argentina; Red de Investigación de estresores Marinos-Costeros en América Latina y el Caribe, Mar del Plata, Argentina. Electronic address:
Heat waves, are a major concern related to climate change, and are projected to increase in frequency and severity. This temperature rise causes thermal stratification, exposing surface-dwelling organisms to higher levels of ultraviolet radiation (UVR). This study aims to understand how the toxic bloom-forming cyanobacterium Microcystis aeruginosa adapts to changing climatic conditions.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources and Environment, Nanchang University, Nanchang 330031, China; Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, China; Nanchang University-Imperial College London Joint Laboratory on Photosynthesis and Low Carbon Biotechnology, Nanchang University, Nanchang, China. Electronic address:
Arthrospira platensis (spirulina) is pivotal to the global microalgae industry, valued for its nutritional and bioactive properties. However, its sustainable production is challenged by freshwater scarcity and biological contaminants. This study introduces a salinity-biostimulants strategy to adapt a freshwater spirulina strain, CBD05, to near-seawater salinity (3 %).
View Article and Find Full Text PDFAppl Environ Microbiol
January 2025
Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA.
The Winam Gulf in the Kenyan region of Lake Victoria experiences prolific, year-round cyanobacterial harmful algal blooms (cyanoHABs) which pose threats to human, livestock, and ecosystem health. To our knowledge, there is limited molecular research on the gulf's cyanoHABs, and thus, the strategies employed for survival and proliferation by toxigenic cyanobacteria in this region remain largely unexplored. Here, we used metagenomics to analyze the Winam Gulf's cyanobacterial composition, function, and biosynthetic potential.
View Article and Find Full Text PDFToxics
December 2024
Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
Entecavir (ETV) is an antiviral used to treat chronic infection caused by the hepatitis B virus, which affects approximately 250 million people worldwide. In order to mitigate the impacts of ETV on the environment, including potential harm to human health, this study evaluated the use of the Fenton-like reaction, which uses iron complexed with ethylenediaminetetraacetic acid (EDTA) at neutral pH, and the microbiological action of in removing ETV from the aqueous medium. Aqueous concentrations of 100 mg/L were subjected to Fenton-like degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!