Small molecule mitochondrial uncouplers transport protons from the mitochondrial inner membrane space into the mitochondrial matrix independent of ATP synthase, uncoupling nutrient metabolism from ATP generation. The therapeutic potential of mitochondrial uncouplers has been investigated for the treatment of metabolic diseases such as obesity and type 2 diabetes (T2D), ischemia-reperfusion injury, and neurodegenerative diseases. This communication will review the small molecule mitochondrial uncouplers reported to date and explore their potential as therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.7b01182DOI Listing

Publication Analysis

Top Keywords

mitochondrial uncouplers
16
small molecule
12
molecule mitochondrial
12
therapeutic potential
8
mitochondrial
6
uncouplers
4
uncouplers therapeutic
4
potential small
4
uncouplers transport
4
transport protons
4

Similar Publications

Introduction: It has been reported that even with the same body mass index (BMI), there are subjects with metabolically healthy or unhealthy phenotype. The main determinants of the unhealthy phenotype are the type and distribution of fat, ectopic fat accumulation, genetics, and lifestyle factors. Uncoupling proteins (UCPs) disengage mitochondrial respiration from ATP synthesis and result in heat production, which in turn is related to energy expenditure and, thus, to fat mass accumulation.

View Article and Find Full Text PDF

Background: Obesity is a chronic disease associated with increased risk of multiple metabolic and mental health-related comorbidities. Recent advances in obesity pharmacotherapy, particularly with glucagon-like peptide-1 (GLP-1) receptor agonists (RAs), have the potential to transform obesity and type 2 diabetes mellitus (T2DM) care by promoting marked weight loss, improving glycaemic control and addressing multiple obesity-related comorbidities, with added cardio-renal benefits. Dual agonists combining GLP-1 with other enteropancreatic hormones such as glucose-dependent insulinotropic polypeptide (GIP) have also been developed in recent years, leading to greater weight loss than using GLP-1 RAs alone.

View Article and Find Full Text PDF

Absence of MCJ/DnaJC15 promotes brown adipose tissue thermogenesis.

Nat Commun

January 2025

Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.

Obesity poses a global health challenge, demanding a deeper understanding of adipose tissue (AT) and its mitochondria. This study describes the role of the mitochondrial protein Methylation-controlled J protein (MCJ/DnaJC15) in orchestrating brown adipose tissue (BAT) thermogenesis. Here we show how MCJ expression decreases during obesity, as evident in human and mouse adipose tissue samples.

View Article and Find Full Text PDF

Modulatory roles of capsaicin on thermogenesis in C2C12 myoblasts and the skeletal muscle of mice.

Chem Biol Interact

January 2025

Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea. Electronic address:

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

4-hydroxybenzoic acid induces browning of white adipose tissue through the AMPK-DRP1 pathway in HFD-induced obese mice.

Phytomedicine

December 2024

Department of Science in Korean Medicine, Graduate School, Kyung Hee University, 02447, Seoul, South Korea; Department of Pharmacology, College of Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea; Kyung Hee Institute of Convergence Korean Medicine, Kyung Hee University, 02447, Seoul, South Korea. Electronic address:

Background: Beige adipocytes have physiological functions similar to brown adipocytes, which are available to increase energy expenditure through uncoupling protein 1 (UCP1) within mitochondria. Recently, many studies showed white adipocytes can undergo remodeling into beige adipocytes, called "browning", by increasing fusion and fission events referred to as mitochondrial dynamics.

Purpose: In this study, we aimed to investigate the browning effects of 4-hydroxybenzoic acid (4-HA), one of the major compounds of black raspberries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!