Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3928/01913913-20171019-02 | DOI Listing |
Adv Mater
December 2024
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
Organoids are 3D biological models that recapitulate the complex structures and functions of human organs. Despite the rapid growth in the generation of organoids, in vitro assay tools are still limited to 2D forms. Thus, a comprehensive and continuous functional evaluation of the electrogenic organoids remains a challenge.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea.
Exp Mol Med
November 2024
Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.
Epigenetic modifiers (miRNAs, histone methyltransferases (HMTs)/demethylases, and DNA methyltransferases/demethylases) are associated with cancer proliferation, metastasis, angiogenesis, and drug resistance. Among these modifiers, HMTs are frequently overexpressed in various cancers, and recent studies have increasingly identified these proteins as potential therapeutic targets. In this review, we discuss members of the SET and MYND domain-containing protein (SMYD) family that are topics of extensive research on the histone methylation and nonhistone methylation of cancer-related genes.
View Article and Find Full Text PDFBiomaterials
March 2025
Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea; Department of Biological Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:
Front Cell Dev Biol
September 2024
Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.
To enhance the practical application of intestinal organoids, it is imperative to establish standardized guidelines. This proposed standardization outlines a comprehensive framework to ensure consistency and reliability in the development, characterization, and application of intestinal organoids. The recommended guidelines encompass crucial parameters, including culture conditions, critical quality attributes, quality control measures, and functional assessments, aimed at fostering a standardized approach across diverse research initiatives.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!