The early stages of picornavirus capsid assembly and the host factors involved are poorly understood. Since the localisation of viral proteins in infected cells can provide information on their function, antibodies against purified Theiler's murine encephalomyelitis virus (TMEV) GDVII capsids were generated by immunisation of rabbits. The resultant anti-TMEV capsid antibodies recognised a C-terminal region of VP1 but not VP2 or VP3 by Western analysis. Examination of the sites of TMEV capsid assembly by indirect immunofluorescence and confocal microscopy showed that at 5h post infection, capsid signal was diffusely cytoplasmic with strong perinuclear staining and moved into large punctate structures from 6 to 8h post infection. A plaque reduction neutralisation assay showed that the anti-TMEV capsid antibodies but not anti-VP1 antibodies could neutralise viral infection in vitro. The VP1 C-terminal residues recognised by the anti-TMEV capsid antibodies were mapped to a loop on the capsid surface near to the putative receptor binding pocket. In silico docking experiments showed that the known TMEV co-receptor, heparan sulfate, interacts with residues of VP1 in the putative receptor binding pocket, residues of VP3 in the adjacent pit and residues of the adjoining VP1 C-terminal loop which is recognised by the anti-TMEV capsid antibodies. These findings suggest that the anti-TMEV capsid antibodies neutralise virus infection by preventing heparan sulfate from binding to the capsid. The antibodies produced in this study are an important tool for further investigating virus-host cell interactions essential to picornavirus assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.virusres.2017.11.017 | DOI Listing |
J Clin Microbiol
December 2024
Department of Pediatrics, University of Florida, Gainesville, Florida, USA.
Cholera rapid diagnostic tests (RDTs) are vulnerable to virulent bacteriophage predation. We hypothesized that an enhanced cholera RDT that detects the common virulent bacteriophage ICP1 might serve as a proxy for pathogen detection. We previously developed a monoclonal antibody (mAb) to the ICP1 major capsid protein.
View Article and Find Full Text PDFFront Immunol
January 2025
Hertie-Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany.
Background: A strong association between multiple sclerosis (MS) and Epstein-Barr virus (EBV) has been established but the exact role of EBV in MS remains controversial. Recently, molecular mimicry between EBNA1 and specific GlialCAM, CRYAB and ANO2 peptides has been suggested as a possible pathophysiological mechanism. The aim of this study was to analyse anti-EBV antibodies in MS patients against (I) EBV lifecycle proteins, (II) putative cross-reactive peptides, and (III) during treatment.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), and Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain.
Viruses may be regarded as dynamic nucleoprotein assemblies capable of assisted multiplication within cells, and of propagation between cells and organisms. Infectious virus particles (virions) assembled in a host cell are dynamic, generally metastable particles: They are robust enough to protect the viral genome outside the cell but are also poised to undergo structural changes and execute mechanochemical actions required for infection of other cells. This chapter provides a broad introduction to the structural and physical biology of viruses and is intended mainly for virology students.
View Article and Find Full Text PDFVirol J
December 2024
Wuhan Institute of Biological Products Co., Ltd.,, No.1 Huangjin Industrial Park Road, Jiangxia District, Wuhan, 430207, China.
Background: The hand, foot and mouth disease (HFMD) was caused by species of Enterovirus A and Enterovirus B in the Asian-Pacific region. Broad-spectrum monoclonal antibodies (mAb) that can bind multiple serotypes of enteroviruses have gradually become a research hotspot in the diagnosis, prevention and treatment of HFMD.
Methods: In this study, a mAb 1H4 was obtained using monoclonal antibody technology by immunizing purified virus particles of Coxsackievirus A5 (CV-A5).
Porcine circovirus type 2 (PCV2) is the major causative agent of postweaning multisystemic wasting syndrome which leads to significant economic losses in the global swine industry. In China, there is a widespread dissemination of PCV2 infection in the pig population. Serological diagnosis of the disease is considered as an effective control measure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!