Agnathans have a globin repertoire that markedly differs from that of jawed (gnathostome) vertebrates. The sea lamprey (Petromyzon marinus) harbors at least 18 hemoglobin, two myoglobin, two globin X, and one cytoglobin genes. However, agnathan hemoglobins and myoglobins are not orthologous to their cognates in jawed vertebrates. Thus, blood-based O transport and muscle-based O storage proteins emerged twice in vertebrates from a tissue-globin ancestor. Notably, the sea lamprey displays three switches in hemoglobin expression in its life cycle, analogous to hemoglobin switching in vertebrates. To study the functional changes associated with the evolution and ontogenesis of distinct globin types, we determined O binding equilibria, type of quaternary assembly, and nitrite reductase enzymatic activities of one adult (aHb5a) and one embryonic/larval hemoglobin (aHb6), myoglobin (aMb1) and cytoglobin (Cygb) of the sea lamprey. We found clear functional differentiation among globin types expressed at different developmental stages and in different tissues. Cygb and aMb1 have high O affinity and nitrite reductase activity, while the two hemoglobins display low O affinity and nitrite reductase activity. Cygb and aHb6 but not aHb5a show cooperative O binding, correlating with increased stability of dimers, as shown by gel filtration and molecular modeling. The high O-affinity and the lack of cooperativity confirm the identity of the sea lamprey aMb1 as O storage protein of the muscle. The dimeric structure and O-binding properties of sea lamprey and mammalian Cygb were very similar, suggesting a conservation of function since their divergence around 500million years ago.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2017.11.009DOI Listing

Publication Analysis

Top Keywords

sea lamprey
24
nitrite reductase
12
globin types
8
affinity nitrite
8
reductase activity
8
sea
6
lamprey
6
functional diversification
4
diversification sea
4
lamprey globins
4

Similar Publications

Assessment of sea lamprey texture from the Guadiana and Mondego River basins. Lamprey has served as food for centuries, and nowadays it is highly appreciated, mainly in southern European countries. Therefore, the quality requirements of the lamprey are closely scrutinized by consumers.

View Article and Find Full Text PDF

Ancient emergence of neuronal heterogeneity in the enteric nervous system of jawless vertebrates.

Dev Biol

January 2025

Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA. Electronic address:

While the enteric nervous system (ENS) of jawed vertebrates is largely derived from the vagal neural crest, lamprey are jawless vertebrates that lack the vagal neural crest, yet possess enteric neurons derived from late-migrating Schwann cell precursors. To illuminate homologies between the ENS of jawed and jawless vertebrates, here we examine the diversity and distribution of neuronal subtypes within the intestine of the sea lamprey during late embryonic and ammocete stages. In addition to previously described 5-HT-immunoreactive serotonergic neurons, we identified NOS and VIP neurons, consistent with motor neuron identity.

View Article and Find Full Text PDF

The lamprey, a primitive jawless vertebrate whose ancestors diverged from all other vertebrates over 500 million years ago, offers a unique window into the ancient formation of the retina. Using single-cell RNA-sequencing, we characterize retinal cell types in the lamprey and compare them to those in mouse, chicken, and zebrafish. We find six cell classes and 74 distinct cell types, many shared with other vertebrate species.

View Article and Find Full Text PDF

Integrated Pest Management (IPM) provides a powerful framework for addressing threats to human well-being caused by nuisance species including invasives. We examined the hypothesis that adaptive management could erode barriers to IPM implementation by developing a decision-analytic adaptive management framework for invasive sea lamprey (Petromyzon marinus) IPM in the Laurentian Great Lakes of North America. The framework addressed objectives associated with coordinating multiple sea lamprey control actions at the regional scale and objectives associated with internal validity of control actions.

View Article and Find Full Text PDF

Variable lymphocyte receptors (VLRs) are antigen receptors derived from the adaptive immune system of jawless vertebrates such as lamprey (Petromyzon marinus). First discovered in 2004, VLRs have been the subject of numerous biochemical and structural investigations. Due to their unique antigen binding properties, VLRs have been leveraged as possible drug delivery agents.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!